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Introduction

« Green Hydrogen Production often makes uses of enclosures
* Dilution ventilation to prevent build-up of flammable gas
* Minimize recirculation and stagnant regions

» Considerable research and industry guidance

» Quantitative frameworks to evaluate performance
 Role for modelling tools (and in-situ measurements)

* Mostly based on natural gas

* Need to account for hydrogen and its increased reactivity

* Modelling tools also need to be tested for hydrogen
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Objectives

« Literature on ventilation (performance-based approach)
« Hydrogen-specific literature on ventilation
 Test an engineering CFD tool on hydrogen data

« Demonstrate use of the model to support design
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Dilution Ventilation (natural gas)

Large (“catastrophic”) releases cannot be mitigated with dilution ventilation that is meant to protect from
Small leaks

ACH is not a suitable parameter to evaluate the effectiveness of the ventilation

A measure of the flammable volume is more adequate

The flammable volume correlates with the ratio “release rate/ ventilation rate” (and not with ACH)
To evaluate ventilation, we need to define a release rate first! (0.25m? to 25mm?)

The research has produced the ISO-21789 standard (for GTs)

The flammable volume generated by the leak should be less than 0.1% of the enclosure volume
The performance of ventilation needs to be demonstrated with CFD and measurements

This criterion has been tested for enclosures of 100m3 and if V; < 0.1%, P, ,,<10mbarg

CFD performed well when compared to experiments where the wind conditions were “steady” but less
well for highly unsteady wind conditions

For large enclosures (>1,000m3) ventilation needs to be complemented with enhancing Gas Detection

Ventilation rate is not the only parameter to design for: the distribution of air-inlets and outlets is also
key
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Guidance (general

« APl RP 505 — 2025 Edition (January 2025
« EI 15 (2024)
« [IEC 60079 — 10-1 (2020

1ISO 21789:2022 (GTs, natural gas!

ISO
|[EC: Ventilation Criterion

.
hole size (1-2 mm) “degree of dilution” INTERNATIONAL ISO
Table B.1 - Suggested hole cross sections for secondary grade of releases —_
=
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elements on | gasket or (gasket thickness) usually
fixed parts | Similar >0.5mm medium
Ring type a1
joint 0.1 025 05
connections
Small bore
connections 20025up 00,1 >01upto 0,25 1.0
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sealing valve stem 025 25 to Equipment ow . . .
| g packings - . Manufacturer's Data but G b P l S f
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T DNV & 0,001 0,01 01 1 10 100

% o, DNV



Dilution Ventilation Research (hydrogen)

* Releases in non-ventilated enclosures. A characteristic stratification (in the vertical direction) with
almost homogeneous concentration near the ceiling (InsHyde, HySea, Hy4Heat)

* Releases in naturally ventilated enclosures. Natural ventilation can be buoyancy-driven, wind-driven or
a combination of both. Depending on speed and direction, wind can either “assist” or “oppose” the
buoyancy. Recirculation regions can also disrupt the buoyancy-driven ventilation. Configurations with
multiple vents at multiple locations of the enclosure are more effective (HSE UK, tests, Hylndoor)

« Releases in forced ventilated enclosures. Very few data, conflicting findings if not properly analysed

Volume (m3) R (hydrogen/ventilation | Effect (conc.)
rate)

Ekoto &al., 2012 3.5x101 none
Lach &al., 2021 60 1.1x102 modest
Kim & Hwang, 2024 1.3 8.7x10* considerable
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Guidance (hydrogen)

« NFPA 2: Hydrogen Technologies Code: “ ventilation should be at a rate not less than 0.3 Nm3/min/m? of
floor area...”

« |ISO/TR 15916: Basic Considerations for the Safety of Hydrogen Systems: “Ventilation system should
remove hydrogen from the confined space or at least keep its concentration below the appropriate lower
flammability limit’

« DNV-ST-J301: Electrolyser Systems: “The level of dilution shall be sufficient to reduce the concentration
of hydrogen to no greater than 1%, i.e. equivalent to 25% of the lower explosive limit’.
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Model Validation/Testing
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Model Validation/Testing (FLACS)

« Source term (release rate, velocity, temperature, expanded diameter)
* Free jet structure (under-expanded jet)
« Dispersion in the enclosures (ventilation, obstacles, confinement, etc.)
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Source term

Reflected shock

Flow boundary
ﬁ
Expansion waves /Mach disk

M=1 M>>1 M<1

_ Slip line
M>1

« Sonic velocity at the “notional nozzle” exit seems to work better

Several approaches:
 Birchetal., 1984
 Ewan & Modie, 1986
 Schefer et al., 2007
 Molkov et al., 2009

Pressure (barg) Z

 Birch (subsonic) also OK (tends to overestimate concentrations) 15.7 1.01
157 11

» Use Real Gas equation of state for pressure above 100barg (Abel-Nobel EoS) 786 15
PV = ZRT
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Free under-expanded hydrogen jets

At least three reasons to study free under-expanded H, jets:
* They provide good, controlled data to validate the CFD tool

 The initial air entrainment is key to define the concentration profiles and is NOT affected by the
ventilation (“momentum dominated region”)

* The jet generated shear turbulence is sufficient to produce strong overpressures upon ignition
(differently from common HCs)
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Free hydrogen jets: Data

Roberts & al., 0.07 kg/s

PO (barg) TO (degC)

DO (m)

Release rate (kg/s
0.07

z(m)
1.5

direction
Horizontal

Roberts &al., 2006 94 13 0.004
Daubech &al., 2015 40 10 0.012 0.25 1.5 Horizontal
Tanaka &al., 2007 400 10 0.008 1 1 Horizontal

Daubech & al., 0.25 kg/s

Tanaka & al., 1 kg/s
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Hydrogen volume farction
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Hydrogen Releases in Enclosures:
“Lacome & al, 2007 [NV

1 Lacome &al., 2007-INERIS a [l o~
2 Lacome &al., 2007-INERIS | ] il
3 Lucas &al., 2020- HySea
4 Lucas & al., 2020-HySea
5 Lowesmith &al., 2009- NaturalHy-DNV
Spadeadam
6 Tanakad&al., 2010 - DNV Spadeadam
7 Tanakad&al., 2010 - DNV Spadeadam
8 Lach&al, 2021
9 Lach&al, 2021
10 Lach&al, 2021
11 Lach&al, 2021
12 Lach&al, 2021
13 Lach&al, 2021

 Non-ventilated, natural and forced
* Pressure range: atm - 400 bar

* Rel rates: 0.2g/s -1k D e e
elease rates: 0.2 g/s g/s Tanaka & al., 2010 m*""i,L,J.aelj&al,zom

« Release: diffuse and jet
 Qutflow velocities: subsonic and sonic
* Froude Number: 102 to 107
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Model Performance: Max Concentration

Stratified cloud — Concentration in enclosure
increases with height as Hydrogen is buoyant.
Gradients are steeper near the ground

Max hydrogen (%), Predicted
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Model Performance: Stratification
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Support to Design: Case Study
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Case Study: Configurations

Five different ventilation configurations were studied with CFD for a compressor shelter (5,000 m3)

Air Outlets (extraction fans)

Air Intake (mirror image on

opposite side of enclosure

Passive Ventilation Active Ventilation

Air Inlets
Air extracts at the roof; + Side Wall Openings (passive) + Side Wall Openings (active)
Air inlets at floor; 1 Ventilation Air Rate: 200 kg/s 1 Ventilation Air Rate: 400 kg/s
3 Ventilation Air Rates: (120 ACH) (240 ACH)

50, 100, 200 kg/s
» owe (30, 60 and 120 ACH)
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Case Study: Flammable Volume

Flammable Volume (m3)
[y
o

Flammable Volume vs Ventilation Rate, SMALL (0.05 kg/s) Flammable Volume vs Ventilation Rate, MEDIUM (1 kg/s) Flammable Volume vs Ventilation Rate, LARGE (25 kg/s)

Base Case x4 (+passive)  x8 (+active) Base Case x2 x4 (+passive)  x8(+active)

5000 5000

SMALL MEDIUM

3000
2000

3000
QL
£ 2000
]
I 1000 1000
0 [

LARGE

=
[=]
[=]
o

4000

Flammable Volume (m3)
Flammable Volume {(m3)

Ventllatlon Rate Ventilation Rate Ventilation Rate

Considerable reduction of flammable volume for the Small by adding side openings (50%
reduction). In any case the Small releases generate filling fraction of order 0.1%

Considerable reduction for the Medium by doubling the air ventilation rate (50% reduction). One
order of magnitude reduction by an eightfold increase of the ventilation rate configuration  AcH

Modest reduction for the Large (even for an eightfold increase of air rate). Basex; - 28
x4 120
Max filling fractions: 0.2%, 47% and 64% respectively for S, M and L X8 240

Note that SMALL was calculated for 5mm; if 1 mm was considered, V; ., = 1m>=0.01 %
DNV
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Case Study: Distribution of Inlets/Outlets

nnnnnnnnn
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Hydrogen = 0.05 kg/s
No side openings

Side openings promote dilution of stagnant pockets

In some conditions, ventilation rate alone is not enough, and distribution of inlets/outlets is

more effective
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Case Study: Increasing Air Rate

Hydrogen concentration (LFL-UFL) Hydrogen concentration (LFL-UFL) Hydrogen concentration (LFL-UFL)

MoleFractionFuel_3D.HYDROGEN (m3/m3) MoleFractionFuel_3D.HYDROGEN (m3/m3) MoleFractionFuel_3D.HYDROGEN (m3/m3)

MoleFractionFuel_3D.HYDROGER
0.7400

I 0.6400
0.5800

0.5200

1120 ACH [ * °°

oooooo

zzzzzz

uuuuu

Y (m) Y (m) ¥ (m)

0000000000

Hydrogen=1 kg/s Hydrogen=1 kg/s Hydrogen=1 kg/s

* Increasing air rate promote dilution of regions where gas has lost momentum and can clear
significant part of the enclosure

23
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Support to Design: Remarks

* Ventilation has good potential to dilute flammable gas for S and M releases.

« The ventilation rate is not the only design parameter: distribution of air inlets and outlets is also
key

« Even when dilution is good (S and M), ventilation alone cannot eliminate the flammable hazard
(especially for high-pressures typical of a compressor room).

* It needs to be complemented with all the other mitigation measures: control of ignition sources,
gas detection and automatic isolation, explosion relief venting, etc.

* Ventilation is not a substitute of good design (i.e., selection of material, minimization of the
inventories, minimization of the size of the piping/connection etc.)

24 DNV ©
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Conclusions

 Current guidance for the design of ventilation systems handling hydrogen is lacking or not fully
quantitative

« CFD engineering tools can reproduce experimental trends - of systems handling hydrogen - in a
wide range of conditions. Hence, they can be a valuable support for the design of ventilation

« A mix of modelling, full-scale testing - when possible - and a good look at the past is the best
recipe to support design.

“We see further by standing on the shoulders of giants”, Isaac Newton, 1675

26 DNVO
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Geometry of the jet as a function of Froude Number

Log (U2/gD)

|

ddFPrPrirrocoeoeer o vEl =B8N

Houfetal., 2008 (17%)
Houfetal., 2008 (30%)
Houfetal., 2008 (40%)
Houfetal., 2008 (50%)
Houfetal., 2008 (60%)
Kuznetsov et al., 2006 (4%)
Ckabayashi et al,, 2005 (4%)
Ruffin et al., 1996 (17%)
Shevyakov et al., 2004 (60%)
Shevyakov et al., 2004 (30%)
Shevyakov etal., 2004 (17%)
Shevyakov et al., 2004 (Turning point)
Shirvill etal., 2005 (4%)
Veseretal., 2009 (4%)
Veseretal., 2009 (17%)
Veseret al., 2009 (30%)
Veser et al., 2009 (40%)
Veser et al., 2009 (50%)
Veser et al., 2009 (680%)

Figure 5-8. The dependence of the distance to nozzle diameter ratio for particular concentration of hydrogen in air on the Froude number.
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Small

200 kg/s, additional side openings (passive) 400 kg/s, additional side openings (active, forcing air ir
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Medium
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Medium
200 kg/s, additional side openings (passive 400 kg/s, additional side openings (active, forcing air ir
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Extraction Fans at the Roof
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