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A criterion for detonation based on the speed
of a “fast” flame?

Pekalski et al. (2015)

Example of industrial piping

Davis et al. (2018)



Experimental Method
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Obstacle Geometry

Mixtures :
* 2H,+0,+1.29N, 19.0 kPa
« CH, + 20, 10.3 kPa

Cheevers et al. ICDERS 2025 .



Visualisation Setup
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Hydrogen Shadowgraph Video and Velocity Plot

2500

N
o
o
o

Flame Tip Velocity [m/s]

1500 A

1000 A

500 -

T T T T T
0.0 0.2 0.4 0.6 0.8
Distance [m]



Hydrogen Flame — Shock Formation

~750 m/s




Hydrogen Flame — Shock Formation

~1000 m/s




Hydrogen Flame — Detonation Initiation

~1000 m/s




Hydrogen Flame — Detonation Initiation

~1000-1400 m/s
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What is special about the CJ deflagration

condition?

* max. burning rate S
* Sonic outflow
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What'’s so special about CJ deflagrations?

Increase in burning speed modifies upstream state via shocks in
order to remain CJ deflagration.

* Poludnenko et al. Physical Review Letters 2011, Science 2019
* Rakotoarison (PhD thesis, ICDERS 2023)



Rakotoarison 1D study
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Rakotoarison 1D study
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Figure 3: Evolution of the flame Mach number and the expected CJ deflagration Mach number
over time.

Flame remains CJ deflagration but modifies upstream state via shock



Chapman-Jouguet deflagrations in closed tubes
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unblockierter

Rohrabschnitt
Hindernis-

strecke

Gewinde-
stangen

Zundflansch

Abbildung 3.2: Geometrie der eingesetzten Blenden sowie Anordnung der Hindernisse
im Explosionsrohr.

Critical Speed for DDT :
Sound speed in products
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Abbildung 5.11: DDT-Prozesse unmittelbar nach und in Abstand von der Hindernis-
strecke in Abhéngigkeit der maximalen Flammengeschwindigkeit in
der Hindernisstrecke.

A. Eder, 2001, Brennverhalten schallnaher und uberschall-
schneller, Wasserstoff-Luft Flammen, PhD Thesis, Technische
Universitat Munchen.



. . Knystautas, R., Lee, J.H.S., Shepherd, J. E. and A.
Com patl ble Wlth Teodorczyk, Flame Acceleration and Transition to

Other em pirical data Detonation in Benzene-Air Mixtures, Combustion and
Flame 115:424-436 (1998)
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Xiao, H., Oran, E.S. Shock focusing and detonation initiation at a flame
front, Combustion and Flame 203 (2019) 397-406.

Simulations

Pinos T. , Ciccarelli, G., Combustion wave propagation through a bank of

. cross-flow cylinders, Combustion and Flame 162 (2015) 3254-3262 .
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Fig. 4. Schlieren images at later stage of flame acceleration and detonation prop- Fig. 5. Computed and measured [20] reaction-front propagation speed as a function
agation. (a) Simulation. (b) Experiments by Pinos and Ciccarelli [20]. Time in mil- of position. The gap in the experimental data curve arises because the initial DDT
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Non-confined DDT
with congestions

Davis, S., Engel, D., van Wingerden, K. and Merilo, E. Can
gases behave like explosives: Large-scale deflagration to
detonation testing, Journal of Fire Sciences 2017, Vol. 35(5)
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Flame Front Velocity (m/s)
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DDT W|th ve nt|ng Rakotoarison, W., Vilende, Yohan, Radulescu, M.l. (2024) Model for

Chapman-Jouguet deflagrations in open ended tubes with varying vent

com patlbl_e W|th CJ ratios. Combustion and Flame.
deflagrations
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DDT with venting
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CJ deflagration robust
“necessary condition” for DDT



What is the amplification length of a CJ
deflagration if congestion stops?



Piston supported CJ deflagrations
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Shock speed [m/s]
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What is the mechanism?

My speculation based on evidence so far:

Landau-Darrieus instability coupled with the shock motion



Saif et al, PROCI 2017

Maxwell, Pekalski
& Radulescu C&F
2018




High blockage ratio, suppress auto-ignition
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* Stoichiometric C;Hg-50,

* Blockage ratio: 96%

Miri et al.: ICDERS 2025, Combustion Symposium 2026



Flame self-corrugates at large scales

Miri et al.: Combustion Symposium 2026



Growth of perturbations compatible with Landau-
Darrius growth rate (factor of 2-3 slower)

—— Thin-flame model (A = H)

400 600 800 1000 1200
t(MS)

Fig. 4: Flame surface amplitude as a function of time, {(¢),
for different wavelengths obtained experimentally, and com-
pared to the thin-flame DL instability model [7].

Miri et al.: Combustion Symposium 2026



Role of perturbations

Without perturbation
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Summary

* CJ deflagration necessary condition for DDT.
* Dependence on rear boundary condition (closed/open)
* Amplification length 9(10)A.

* Mechanism compatible with Landau-Darrieus instability coupling
with lead shock dynamics.
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