

Explosion risk in hydrogen facilities – balancing simplified and comprehensive approaches

Olav Roald Hansen 35th anniversary UKELG meeting Oct 10-12, 2017 Spadeadam

Working together for a safer world

Hydrogen explosion risk – growing field, but still "behind comma"...

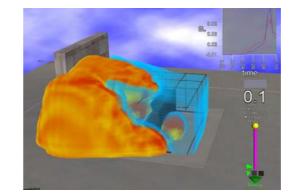
Oil and gas projects still #1 source of income

Example: Johan Sverdrup field – LQ, P1, DP, RP and P2 platforms (peak production 660 000 bpd)

LR providing safety studies FEED, Detail Design, As-Built 2014-today

Experience within hydrogen safety

25 years CFD-dispersion/explosion modelling FLACS


- 19y CMR/GexCon, 2y GL Noble Denton and 4y LR
- 1998=> make FLACS a hydrogen safety software
- 1998-2004 R&D test projects dispersion and explosion
- 2001-2008 Responsible R&D and sale of FLACS CFD
- 2004-2010 EU-project HySAFE (25 partners in Europe)
- 2004-2012 IEA Expert Groups Hydrogen Safety
- Various consulting work hydrogen safety
- 15+ scientific articles within hydrogen safety

UKELG

1998 Harwell (FLACS & deluge)
2004 Cheshire (FLACS Hydrogen)
2007 Kingston (Large scale tests-overview)
2013 Cardiff (DDT and detonation modelling)
2017 Spadeadam (Hydrogen risk assessments)

Hydrogen safety projects picking up in Norway?

- 20 hydrogen refuelling stations planned (~5 built)
- Solar H₂ production for truck refuelling
- Hydrogen car ferry by 2021
- Numerous other marine initiatives

Electric & hydrogen: Positive for local pollution and noise Bergen: ~50% of sold cars EL&plug-in

Region: Majority of 16 car ferry connections to become electric

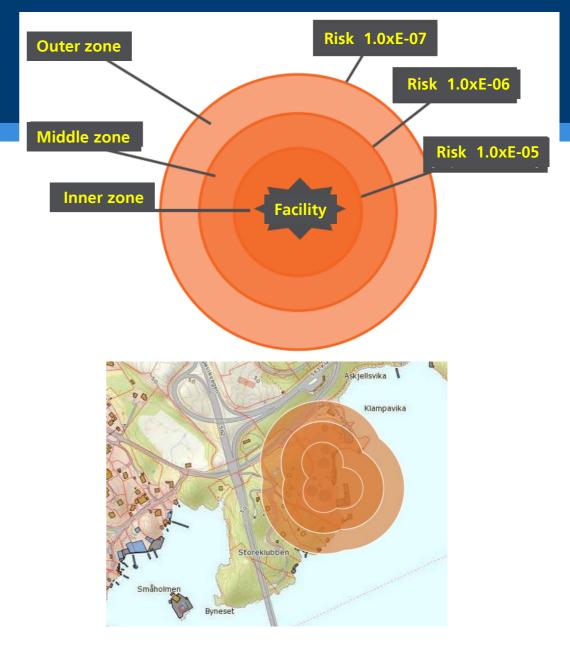
A HYDROGEN # Byttes de dieseldrevne hurtigbåtene i Sogn og Fjordane ut med båter drevet på hydrogen, vil det samlede klimautslippet fra kollektivtrafikken i Viket mer en halveres.

Sogn og Fjordane går for klimarevolusjon til sjøs

Utviklingskontrakt hydrogen-elektrisk ferje Tidsplan – fordeling dialog/byggetid

Aktivitet/fase	2017			2018			2019				2020			2021							
Dialogkonferanse (mars 2017)				Rar	nm	etill	atel	se –	-									1	Ŧ	7	ł
Kvalifisering (juni – august)				-													6	(F)	4	
Dialog (okt - mars)								В	eslut	ning rba	spur	ואניס	P ^{III} .								
Tilbudskonkurranse (mai -august 2018)							-	n	iålop	pnå	net, Ise	SIK	kern	et o	9						
Tildeling (kontrakt) (sept 2018)								-													
Realiseringsfase/bygging (des 2018 – sept 2020)																G	odk	jer	nin	g	
Testing fartøy																			•		
Oppstart anbudsperiode 01.01.2021 Testing drift utviklingsfartøy Oppstart med H₂ 3. kvartal 20021																				-	

Siting studies facilities

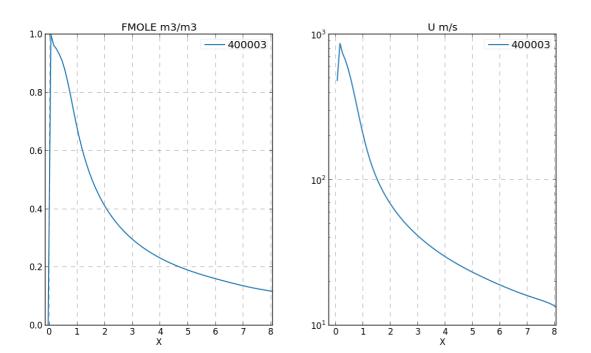

Inner zone (fatality risk >1E-5): Normally within property limits[#] 1st party (workers on the site)

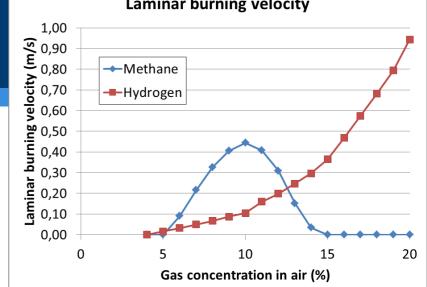
[#] Intermittent exposure of 3rd party may be allowed

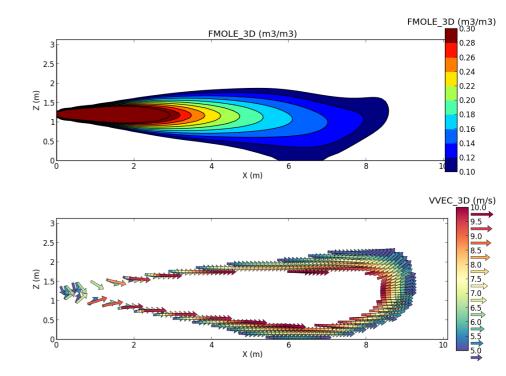
Middle zone (1E-5> fatality risk > 1E-6): Public roads, rail, harbour areas etc. Industrial sites and offices No hotels or homes (scattered homes may be allowed)

Outer zone (1E-6> fatality risk > 1E-7): Homes, shops, guesthouses

Beyond outer zone (fatality risk < 1E-7): Schools, kindergarten, hospitals, care homes Shopping malls, hotels and arenas

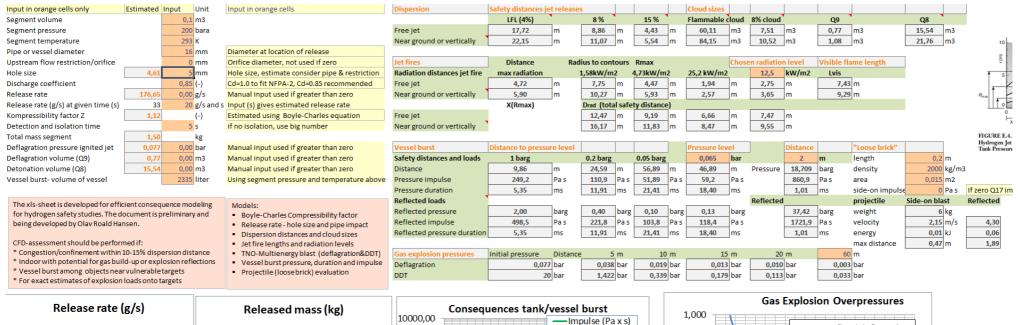

Vulnerability assumptions also required: Pressure (people and buildings), radiation, projectiles

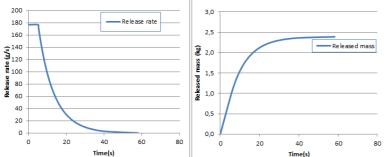

Hydrogen risk assessment approaches

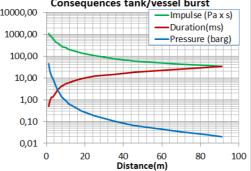

Some important aspects with hydrogen:

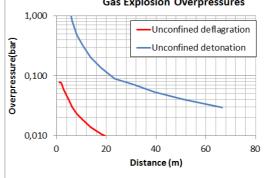
- 1) Explosion risk very low with < 10-15% H_2 in air $P \sim Bv^2$
- 2) Buoyancy very high (reactive gas concentrations)
- 3) Jet velocity & mixing high
- 4) Wind mostly irrelevant; no need to assess 12 directions 2F & 5D

=> Simplified assessment useful in many cases

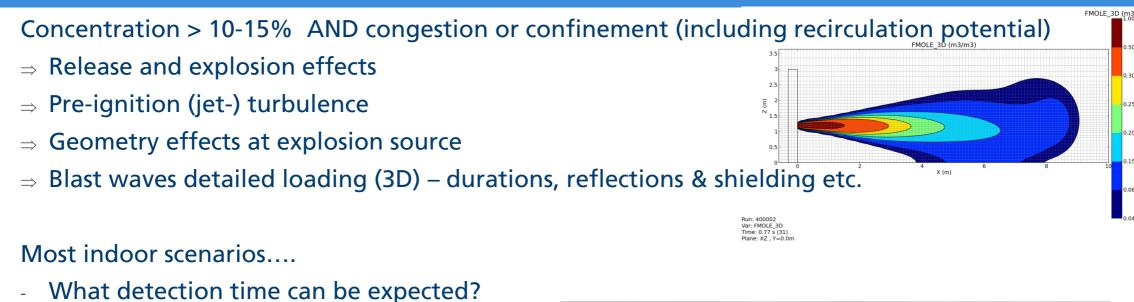





Laminar burning velocity


Hydrogen risk assessment approaches

Simplified assessment useful in many cases (LR risk screening sheet developed by Olav RH shown)



Hydrogen risk assessments – when CFD is required

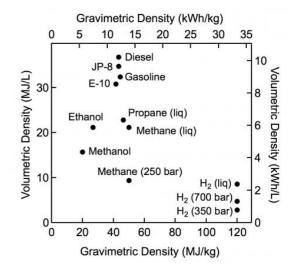
- Is emergency ventilation effective?
- What is actual release rate from pipe?
- Is there a potential for DDT, if so...

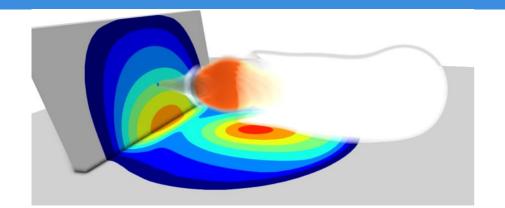
Vessel burst scenarios near targets

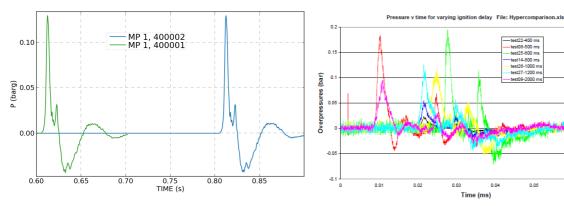
Liquid hydrogen

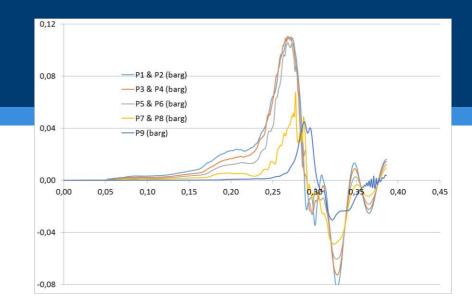
H₂ smallest molecule- 0.07 x density of air

- Important safety principle hydrogen to disappear upwards
- Exception: Liquid hydrogen (~20 K)
- Costly to cool (1/3 of combustion energy)
- Vapours denser than air, in particular pressurized releases
- Challenge: O₂ and N₂ "snow" due to condensation/freezing of air
- O₂-doped air may give strong increase of gas reactivity Photos from HSL experiments:

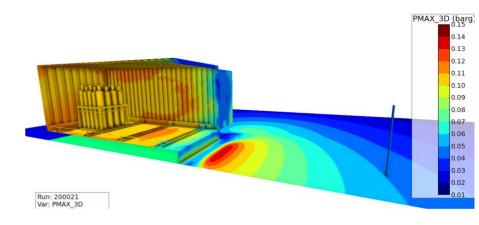

Ichard, M., Hansen, O.R., Middha, P. & Willoughby, D. (2012). CFD computations of liquid hydrogen releases. International Journal of Hydrogen Energy, 37: 17380-17389


Storage/handling efficiency may require LH₂





Pre-ignition turbulence & DDT



HSL ignited jet 350 g/s, ignited at ~0.8s ~ 150 mbar ~260 g hydrogen released

HySEA container benchmark ~100 mbar 15%, some congestion, fully open door ~450 g hydrogen

What if we combine these scenarios? => 260 g catastrophically released inside container

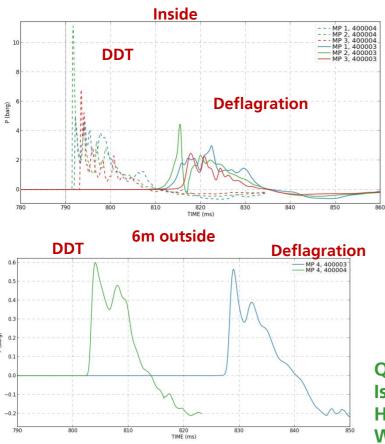
0.00

0.0

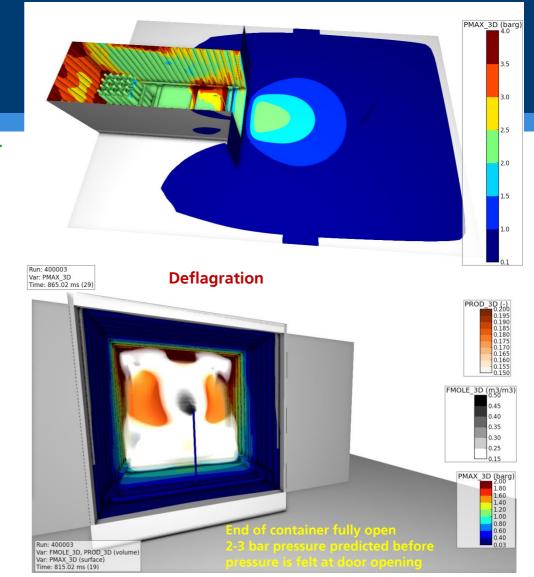
-test22-400 ms

test08-500 m

test25-600 ms

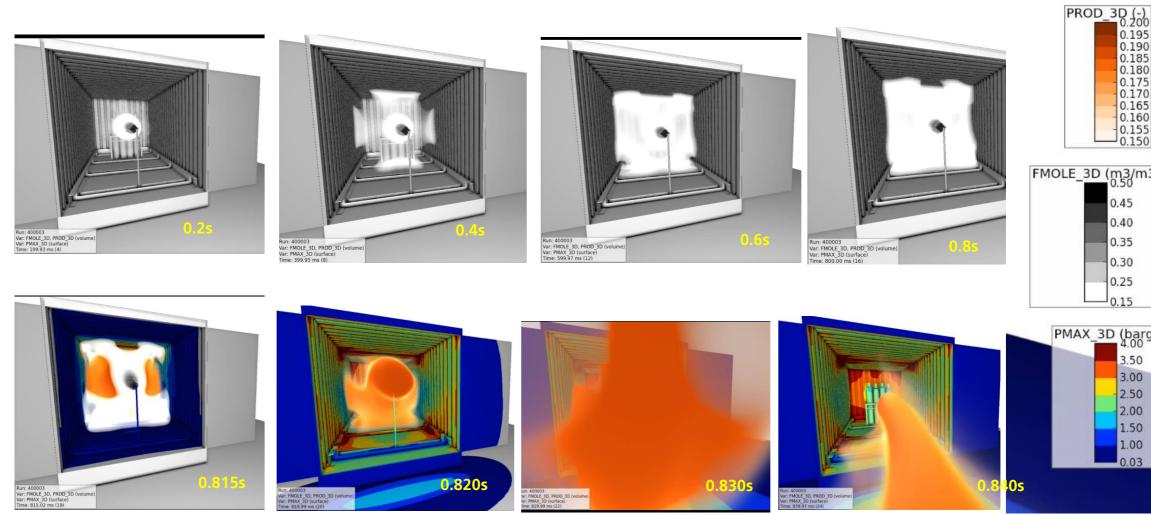

test14-800 ms test26,1000 m

test27-1200 m


test09-2000 m

Jet release into open container-ignited

HSL jet 350 g/s into container, ignited at ~0.8s ~ 150 mbar ~260 g hydrogen released Simulated both as deflagration and DDT/detonation


Questions:

Is scenario credible?Release rate ~100 g/s filling container surely is ...How to take into account in risk & safety study?CFD modellingWhat is the beneficial effect of explosion venting?Limited for severe casesWhat about emergency ventilation?Ventilation good for moderate release rates

Jet release into open container-ignited – video frames

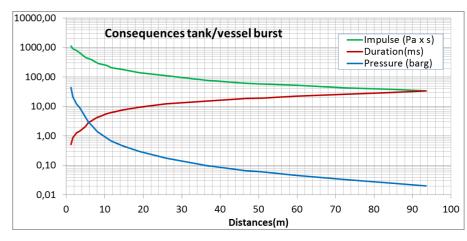
HSL jet 350 g/s into container with fully open endwall, ignition at 0.8s, deflagration simulation

Tank burst

Challenge 1:

What is the frequency of catastrophic tank burst?

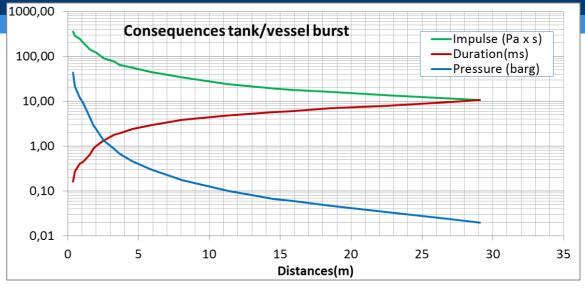
Type 4 steel tanks

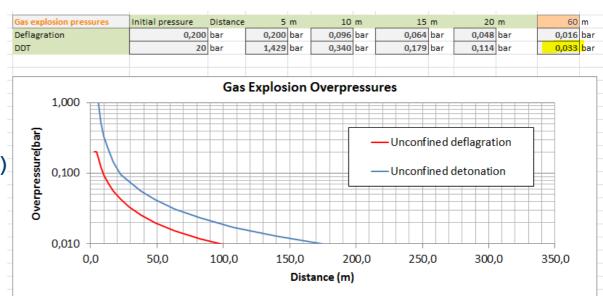

very well tested and rated, wide safety marginsFrequency = zero... or something else?

Challenge 2:

Very high pressures with very short duration... Typical building resistance values 0.10-0.30+ bar Simple tool and CFD in agreement

What is the hazard to people behind the wall? - Loose brick assessment...

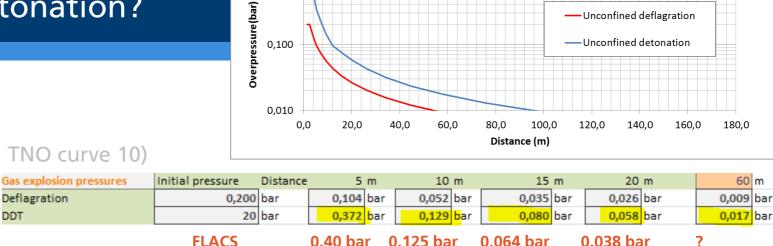

Example tank burst in the open using CFD


What pressures were we exposed to from 15.6m³ hydrogen detonation demonstration?

Approach 1: "Vessel burst" Input: Adiabatic flame temp: 2254 K Pressure: 8.2 bara Volume: 15.6m³ Preparation time: 1 minute Prediction: 20 mbar at 30m

Not really optimal source, explosion dynamics lost

Approach 2: TNO-MEM curve 10 Input: cloud volume 15.6m³ Pressure: 20 bar (becomes 10 bar i.e. TNO curve 10) Preparation time: 1 minute Prediction: 33 mbar at 60m


Comparison TNO-MEM & "quick CFD" for 2.5m³ hydrogen detonation?

Approach 2: TNO-MEM curve 10 Input: cloud volume 2.5m³

Pressure: 20 bar (becomes 10 bar i.e. TNO curve 10)

Approach 3: FLACS (with LR DDT-tweak)

Preparation time: 1 minute Prediction: 17 mbar at 60m

1.000

0,100

CFD accurate in near-field, too much decay in far field due to coarse grid used (simulation shown was performed quickly night before to predict demonstration)

Gas Explosion Overpressures

Unconfined deflagration

— Unconfined detonation

Input: Detailed cloud location size/shape, ignition point, grid, output variables and times Preparation time: 20 minutes, run time: hours (5 to 20 hours) 0.40 Prediction: 20 mbar at 30m (simulation not completed) 0.35-0.30-

Far-field

TNO-MEM screening likely accurate CFD: powerful when details required Requires fine grid (time consuming) => Detailed load pattern the benefit

0.25-PMAX bard 0.20-10 -000001 0.15-0.10-0.05--0.00--0.05--0.10 15 25 35 Run: 000001 Time= 0.010 (s) Var: PMAX Time: 79.99 ms (13)

Conclusions

Numerous hydrogen initiatives emerging in society

Hydrogen has in many ways extreme properties

Safety is a critical aspect, but budgets normally limit depth of risk studies => Balance between quick assessment approaches and CFD when required

Optimal design and safety may require other solutions than for natural gas etc.

- Emergency ventilation?
- Explosion venting?
- Optimal size of compartments
- Liquid hydrogen should be handled with particular care

Optimal safety requires competence and understanding ...

Olav Roald Hansen Senior Principal Consultant

T +47 91 17 17 87 E olav.hansen@lr.org

Lloyd's Register www.lr.org

Working together for a safer world

Lloyd's Register and variants of it are trading names of Lloyd's Register Group Limited, its subsidiaries and affiliates. Copyright © Lloyd's Register 2017. A member of the Lloyd's Register group.