

Investigation of non-uniform Hydrogen / Air mixture flame acceleration and transition to detonation

Reza Khodadadi Azadboni^a, Ali Heidari^a, and Jennifer X. Wen^{b,*}

^aFire, Explosion and Fluid Dynamics Research Team, School of Mechanical & Automotive Engineering, Kingston University London, SW15 3DW, UK

^bWarwick FIRE, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

*Jennifer.Wen@Warwick.ac.uk

Contents

- Introduction
- Problem description
- CFD approach
- Results
- Conclusion

SafeLNG:> Problem Description Hazards of Liquid Fuel shipping

- Rollover
- Fuel cascade
- □ Spill and dispersion
- Flashing fuel jet fires
- pool fires

❑ Large scale vapour cloud explosions

Flame acceleration and interaction to obstacles and transition to detonation

DDT experiment by Gexcon

Introduction

Effect of Concentration gradient in DDTEffects of Blockage ratio in DDT

CFD Approach

- The density-based code developed under OpenFOAM solves the unsteady, compressible Navier-Stokes equation with single step Arrhenius chemistry.
- Cantera for the thermodynamic properties
- Harten–Lax–van Leer–Contact (HLLC) for accurate shock detonation capturing
- High capability of shock and detonation cell capturing
- Implemented Richtmyer Meshkov instabilities and Baroclinic vorticites effects in the solver

SafeLNG

Adaptive Refinement Mesh (AMR) method

The computational model

2-D calculations Closed channel of 0.3 (W) 5.4 (L) 0.06 (H) (m)

Ignition:

Patch cells within a radius of 10 mm around the point of ignition (x=0, y=0.03m) to the burnt state (isobaric, adiabatic burnt mixture).

Boeck LR, Katzy P, Hasslberger J, Kink A & Sattelmayer T. (online 03/2016). The "GraVent DDT Database". Shock Waves, doi:10.1007/s00193-016-0629-0

Inhomogeneous 30% H2/Air mixture BR60

Temperature Fields

Inhomogeneous 30% H2/Air mixture BR30

Pressure Fields

Effects of Concentration gradient

Kingston University

30% H2/Air mixture BR60%

- Comparison between homogenous and inhomogeneous cases

SafeLNG

Homogenous mixture

Inhomogeneous mixture

DDT happened at x=1.09

DDT happened at x=1.45 m

Homogenous 30% H2/Air mixture BR60% **Qualitative comparison between CFD and Experiment**

University

Homogeneous 30% H2/Air mixture BR60

Numerical Schlieren

Homogeneous 30% H2/Air mixture BR60

Numerical Schlieren

Inhomogeneous 30% H2/Air mixture BR60

SafeLNG

15

Kingston University London

Inhomogeneous 30% H2/Air mixture BR60

Numerical Schlieren

Inhomogeneous 20 % H2/Air mixture BR60

Transition to detonation

Kingston University London

Homogenous mixture	DDT did not happen	
Inhomogeneous mixture	DDT happened at x=3.95 m	
6-	ofol NG	
		l .

THE UNIVERSITY OF WARWICH

SafeLNG

20% H2/Air mixture BR30%

- Comparison between CFD and Experiment

DDT happened at x=2.89 m

SafeLNG

20% H2/Air mixture BR30%

Numerical Schlieren

Time: 0.016540 sec

Pressure

Time: 0.016540 sec

Temperature

Time: 0.016540 sec

30% H2/Air mixture BR30% comparison between CFD and Experiment

SafeLNG

35% H2/Air mixture BR30% comparison between CFD and Experiment

DDT happened at x=1.8 m

SafeLNG

35% H2/Air mixture BR30%

WARWICK

Higher resolution results

- Max Courant number: 0.3
- Time step = 3.28084e-08
- Minimum cell size 10 µm (30 grid points per HRL)

SafeLNG

Running duration: 60 days, with using 128 cores in cluster

Unobstructed channel

Transition to detonation					
Concentration	Homogeneous	Inhomogeneous			
20 % H2/Air	No DDT (maximum flame speed = 45 m/sec)	No DDT (maximum flame speed = 200 m/sec)			
25 % H2/Air	No DDT (maximum flame speed = 150 m/sec)	DDT at x=4.55 m			
30 % H2/Air	No DDT (maximum flame speed = 1000 m/sec)	DDT at x=4.6 m			
35 % H2/Air	DDT at x=4.9 m	DDT at x=4.78 m			

SafeLNG

Conclusion

- The flame position and flame tip speed are in reasonably good agreement with the experimental measurements.
- For both homogeneous and inhomogeneous 30% hydrogen cases, onset of detonation occurs within the obstructed channel section. The homogeneous mixtures shows slightly faster flame acceleration and earlier DDT.
- ➢ For the 20% case, transition to detonation is observed only for the inhomogeneous mixture, where the concentration gradient enables stronger flame acceleration, especially in the unobstructed channel section, compared to the homogeneous mixture.
- Increase in the fuel concentration was found to increase the FA and faster transition to detonation.
- High resolution study captured the keystone feature as well as hydrodynamic instabilities, such as Kelvin Helmholtz and Richtmyer-Meshkov instabilities.

SafeLNG

Acknowledgement

Numerical characterization and simulation of the complex physics underpinning the Safe handling of Liquefied Natural Gas (**SafeLNG**) (2014-2017) is an Innovative Doctoral Programme (IDP) funded by the **Marie Curie Action** of the 7th Framework Programme of the **European Union**.

SafeLNG

Thanks for your attention! Any questions?

