DNV·GL

OIL & GAS

DOWSES & AIRRE

Upcoming Research

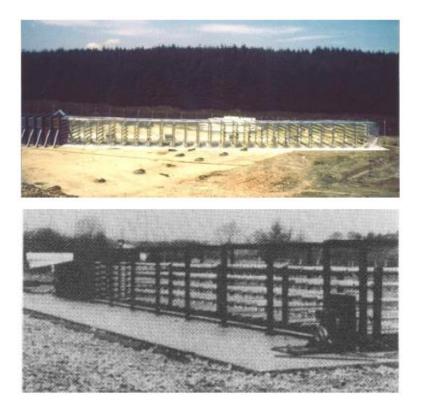
Dan Allason 11th October 2017

Introduction

- 1. Explosion Research @ Spadeadam
- 2. DOWSES
 - a) Background
 - b) Experimental Programme
 - c) Analysis
- 3. AIRRE
 - a) Background
 - b) Experimental Programme
 - c) Modelling

Explosion Research @ Spadeadam Testing & Research

3 DNV GL © 2016 07 December 2016


<u>Development Of Water Spray</u> <u>Explosion Suppression</u>

Early Studies

45 x 3 x 3 m congested explosion rig

- Expensive

- 1/5th linear scale rig to reduced costs
 - Flame acceleration with low repeatability
 - Correlation of low flame speeds with rain on test day
 - Droplet sizes invariant with scale of rig → proportionally more water in smaller scale

Early Studies

- Demonstration experiment in full scale rig
- 500 m.s⁻¹ reduced to 40 m.s⁻¹
- 4 bar to <100 mbar</p>
- Confirmation in 1/5th scale experiments

Confidential

 Attempts with poly. bags did not replicate effects

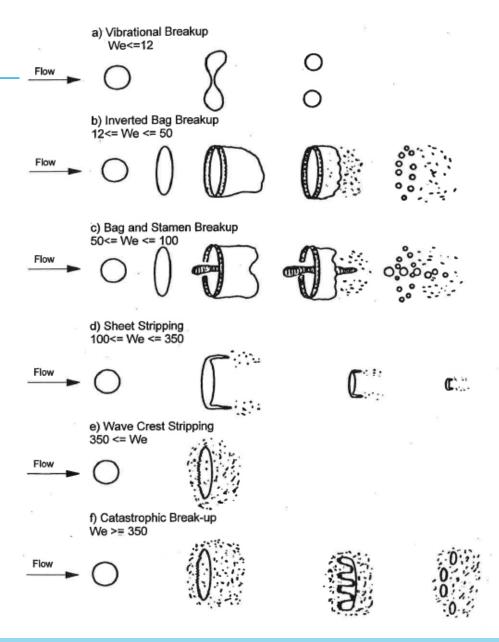
Post Piper Alpha: 45m Rig

	No Water Sprays	Open Pendant Nozzles	High Velocity Nozzles	
Natural Gas	4 bar	0.35 bar	1.0 bar	
Propane	30 bar	1.7 bar	-	

In all cases, the presence of general area deluge at the time of ignition led to a reduction in explosion overpressures, particularly in cases involving the highest overpressure without deluge

Post Piper Alpha: Water Spray Characterisation

- 180 m³ explosion chamber
- No vent restriction → high velocity req'd for high pressure
 - Provided by congestion
- Vent restriction → pressure provided by confinement
 - Low flame speeds



- No restriction water works as expected
- Restricted vent water droplets don't break up.
 Turbulence from sprays increases explosion severity

$$W_e = \frac{\rho. \, d. \, u^2}{\sigma}$$

- P is density (of air, kg.m⁻³)
- d is Sauter Mean Diameter (m)
- u is slip velocity (m.s⁻¹)
- σ is surface tension (N.m⁻¹)

Summary of Spray Characterisation Experiments Results

- All water sprays in partially confined geometry gave lower OP
- Generally: misting nozzles showed no significant improvement over fire deluge sprays with larger droplets
- Nozzles producing larger droplets still gave better mitigation than fire deluge sprays
- Highly confined experiments showed increase OP for all sprays
 - Exception being the large droplet sprays in highly confined, highly congested experiments

Post Piper Alpha: Full Scale Experiments

 General Area and Water Curtain experiments all provide reduction in explosion severity

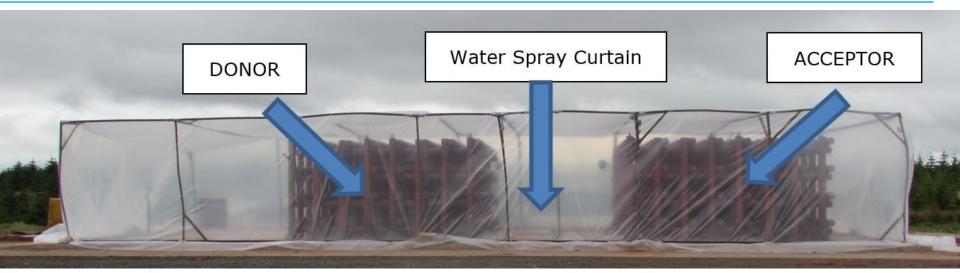
Project MEASURE

- Interaction of process regions in gas cloud explosion
- Relevant to highly congested process areas – e.g. FLNG topside
- Data from tests to validate update to FLACS CFD code

Participants

GexCon (Lead) DNV GL Total Engie Statoil BP ExxonMobil Shell (contribution in kind)

Project: MEASURE


- FLNG facilities a significant investment
- Safety gaps can be expensive
- Research to provide some validation for modelling
- Additional contract research looking at deflagration to detonation transition

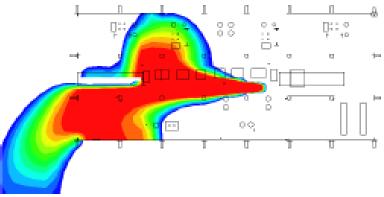
DOWSES

- Build on early studies and MEASURE
- Develop knowledge of water curtain potential to reduce Critical Separation Distance
- Variables: Congestion type, fuel, severity of unmitigated
- Invitations for modelling exercise open soon

Confidential

Participants

DNV GL Total Shell Woodside Research Council of Norway (DEMO2000)


	Experiment ID	Congestion Type	Fuel	Unmitigated Interaction Level (from MEASURE)	Curtain Arrangement	Nozzle Arrangement	OBJECTIVE
DOWSES	1	Rig9	Propane	DDT	Single, central	Fan, downwards	Optimal curtain location in high interaction
	2				Single, Donor exit	Fan, downwards	
	3				Single, Acceptor entry	Fan, downwards	
	4				Optimal Chosen from	Narrow Cone, downwards	Optimal curtain arrangement in high
	5				1-3	Fan, upwards	interaction
	6					Narrow Cone, upwards	
	7				Optimal from 1-6	Optimal from 1-6 but increased water qty	Check sensitivity to water quantity
	8				Optimal from 1-6	Optimal from 1-7 but different water qty	Check sensitivity to water quantity
	9				Donor exit and Acceptor entry	Optimal from 1-8	Check double curtain effects
	10				General Area Deluge on Acceptor		Comparison with General Area Deluge
	11			Low	Optimal chosen from 1-7 No curtain Optimal chosen from 1-8		Effect of optimal arrangement on low interaction case
	12		Methane	High			Baseline Methane Rig9 case (not present in MEASURE)
	13						Effect of fuel type on optimal arrangement
	14	Rig7					Effect of congestion type on optimal arrangement
	15				Different arrangement to 14		Check optimal arrangement still optimal
	16-20			Re	Repeatability Experiments		arrangement son optimar
	21	Rig9	Propane	DDT	Optimal from 1-8 but with particulate injection particulate injection particulate into water		
Confidential	22	Rig9	Propane	DDT	TBC curtain arrangement with particulate injection Assess potential effect of particulate injection with		Assess potential effect of
							arrangement
15 DNV CL @ 2016 07 Do	combor 2016	1		1			2

15 DNV GL © 2016

<u>Assessing the Influence of Real</u> <u>Releases on Explosions</u>

AIRRE

- Most experimentation involves quiescent, homogeneous gas : air mixtures
- Realistic releases can give inhomogeneous, turbulent volumes
 - Equivalent cloud concepts
- Need to understand turbulence and concentration gradients

Participants

Gexcon Engie Total Shell Research Council of Norway (DEMO2000)

AIRRE WP-A: Experiments

- Large size natural gas wall-jets
- Target mass flow rate is ~100 kg.s⁻¹ for ~40 seconds
- Initial experiments without pipework congestion
 - Commissioning of instruments
 - Assessment of pre-ignition turbulence effects
- Remaining experiments impinge on pipework congestion (see MEASURE)
 - Vary ignition position
- Budget dependent: add confinement?

LFL distance	Flame length	Flame height	Heat flux in the downwind direction [kW m ⁻²]			
			5.0	12.5	20.0	37.5
140-170 m	115 m	35 m	190 m	155 m	140 m	130 m

	Test no.	Illustration	Comments
AIRRE WP-A: Experiments	1	*	Wall jet No congestion Ignition in fuel-rich region
	2	*	Wall jet No congestion Ignition stoichiometric region
	3	*	Low-congestion modules Safety gap Ignition in fuel-rich region
	4		Low-congestion modules Safety gap Ignition in fuel-lean region
	5		High-congestion modules Safety gap Ignition in fuel rich region
	6		High-congestion modules Safety gap Ignition in fuel-lean region
	7-10 (option 1)		Idem 3 to 6 with modified separation distance
	11-16 (option 2)		Idem 1 to 6 with reducing release rate

AIRRE WP-A: Experimen

AIRRE WP-B: Modelling

- B.1: Simulating the effect of pre-ignition turbulence
- B.2: Improved source term modelling
- B.3: Extensive literature study on DDT and Detonations
- B.4: Modelling and validation of DDT and detonations in FLACS
- B.5: Modelling blast wave propagation in FLACS
- B.6: Selected model improvements in FLACS

Contact Information

- Both DOWSES and AIRRE are still open to partners
 - DOWSES: Dan Allason (daniel.allason@dnvgl.com)
 - AIRRE: Trygve Skjold (<u>trygve.skjold@gexcon.com</u>)

Thank you for your attention

Dan Allason daniel.Allason@dnvgl.com +44(0)20 381 64140

www.dnvgl.com

SAFER, SMARTER, GREENER