

BECAUSE SO MUCH IS AT STAKE

Metal Dust Explosions by Dave Burn

A Review of Metal Dusts Explosion Incidents

Following several major dust explosions, the Chemical Safety Board (CSB) published a dedicated study in 2006: 281 dust explosions were reported between 1980 and 2005 in the USA killing 119 workers and injuring 718 Metal dusts were involved in 20% of these incidents (Chemical Safety Board, 2006).

According to the Center for Chemical Process Safety (2005), FM Global identified 19 explosions involving metal dusts between 1985 and 1995, representing 13% of all incidents (Feb, 2001).

Metal dust deflagrations have also been regularly reported in Europe, Japan, and recently China.

Fike

BECAUSE SO MUCH IS AT STAKE

Figure 3. View of the dust collector (outside) and the facility (inside) after a dust explosion at a manufacturing plant in Huntington, Ind., in 2003. Source: U.S. Chemical Safety and Hazard Investigation Board.

Fike

Kunshan, Jiangsu, China (2014)

On August 2nd, 2014, an aluminum dust deflagration took place in an automotive parts factory of Jiangsu province, killing 146 people and injuring 114 people (Li et al., 2016). The explosion was heard several kilometers away, and shattered glass up to 500 meters away (Figure 9).

ANATOMY OF METAL DUST EXPLOSIONS

Metal dusts are similar to organic dusts in that they, once ignited, undergo oxidation reactions and the combustion can propagate through a dust cloud. They differ in the nature of the products formed: while all organic fuels form primarily carbon dioxide and water vapour (Eq. 1), each metal dust forms a particular metal oxide (Eq. 2):

$$
(C_6H_{10}O_5)_x + O_2 \to CO_2 + H_2O + Heat,
$$
\n(1)

$$
2\text{Al} + \frac{3}{2}\text{O}_2 \rightarrow \text{Al}_2\text{O}_3 + \text{Heat} \,. \tag{2}
$$

As a result, organic dusts have quite similar combustion properties, whereas metal dusts exhibit more variability and extremes [9], as illustrated in Table 1.

Element	T_f	P_{max}	K_{st}
Al	3,550	13	800
Ti	3,450	5.7	35
Mg	3,100	17.5	500
Si	2,870	$9.5 - 10.8$	$100 - 168$
Fe	2,250	4.5	29
Zn	1,860	4.4	17
C	2,320	$5 - 9$	$50 - 350$

Table 1. Physical properties of selected metal dusts compared to carbon. [9, 10]

Explosibility tests

Previous investigations (HSL)

- 20-L sphere and 1-m³ vessel tests
- 4 organic dusts + aluminum dust

Lunn, G., Crowhurst, D., Hey, M., The effect of vent ducts on the reduced explosion pressures of vented dust explosions. Journal of Loss Prevention in the Process Industries. 1988. 1(4): p. 182-196.

Explosibility tests

Previous investigations (FSA)

- 20-L sphere and 1-m³ vessel tests (FSA) \bullet
- Two types of aluminum dust with different particle size ۰ distributions were used (AS011, AS081)

Explosion Protection

The management of dust explosion risk includes the implementation of both preventive and protective measures. An overview of explosion protection techniques applied to metal dusts, including Venting including flameless, suppression, and isolation, will presented in the next slides.

Explosion Venting

Figure 5. Venting of Aluminum Powder Deflagration

Flame-less – Fuel Limitations

Failure to flameless vent aluminum dust

Suppression of Metal Dusts - History

1988 – Moore & Cooke undertook tests in a 6.2m³ vessel @ 500g/m³ with 12.9kg/m³ Sodium Bicarbonate.

1989 – Bartnecht undertook tests in a $1m³$ vessel, Low concentrations OK. High concentrations $>$ 500g/m³ failed.

2002 – Going & Snoeys undertook tests in 1m³.

2014 – Snoeys undertook tests at FSA in $1\,\mathrm{m}^3$ & 4.4 m^3 with aluminium at various concentrations.

Fike

BECAUSE SO MUCH IS AT STAKE

1 m³ vessel suppression tests with organic dusts.

^a Total suppressed pressure is the average of two tests.

Table 3

1 m³ vessel suppression tests with silicon and aluminum dusts.

^a Total suppressed pressure is the average of two tests.

Table 4

×

1 m³ vessel suppression tests with silicon dust (varying Pact and suppressant concentrations).

Total suppressed pressure is the average of two tests.

Table 7

 1 m^3 and 4.4 m³ vessels suppression tests with aluminum (FSA).

^a Detector activation pressure was 0.035 bar.

^b Total suppressed pressure is the highest one when more than one test was performed.

Fike

Explosibility tests

5 metal dusts:

- iron, zinc, silicon, aluminum (2)
- + cornstarch (reference dust)
- > 100 tests performed in 1-m³ vessel
- > 100 tests performed in 20-L sphere

BECAUSE SO MUCH IS AT STAKE

Explosibility tests (cornstarch, reference)

BECAUSE SO MUCH IS AT STAKE

Explosibility tests (iron and zinc)

Explosibility tests (silicon)

Aluminum 5 µm

Fine particles may agglomerate in the 1-m³ vessel

"Homogeneous" cloud

Aluminum 45 µm

Aluminum 5 µm

Larger particles **Coagulation**

Conclusions

 \bullet

- Metal dust explosions differ from organic dust explosions and must be treated accordingly even for venting as the P_{red} will be higher than predicted using standard sizing methods.
- Venting can be used with care based on true understanding of the hazard. Extrapolation to large volumes needs to be limited.
- Flameless venting; Yes but with low volatility metal dusts e.g. Iron.
- Suppression can achieve reduced pressures of \lt 1bar for metal dusts up to K_{max} 300. No testing of magnesium has been reported.
- Isolation; If detection is early and the barrier placement is close to the origin then isolation can be achieved.
- Isolation has been demonstrated by chemical and mechanical methods, combinations of these methods and by combination of mechanical and venting methods. Chemical isolation was successful in a straight pipe up to Kmax 650.

Bibliography

æ

A Review of Metal Dusts Explosion Incidents

EP Metal Dust Fuels

- Explosion Protection with Metal Dust Fuels-New Experimental Evidence
- Metal dust explosion protection-What chemical plant managers need to know 75
- Scaling Metal Dusts Explosion Severity from Laboratory to Industrial Scale_NFPA 68 Committee_... 7.
- Suppression of metal dust deflagrations Journal of Loss Prevention
- X-ISHPMIE_Paper_Suppression of Metal Dust Deflagrations_revision 2

Corresponding authors: Jerome.Taveau@fike.com.jef.snoeys@fike.com