

OIL & GAS Detonation – Evidence from Explosion Incidents

Mike Johnson

22 September 2016

Overview

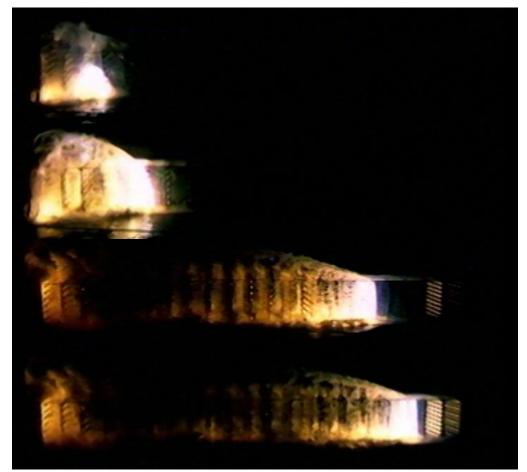
- Background and context
- Evidence for DDT and sustained detonation in vapour cloud explosions
 - Experimental data
 - Incidents
- Why it matters

History - Large Scale Experimental Studies

 DNV GL Spadeadam Testing & Research Centre

History - Large Scale Experimental Studies

- DNV GL Spadeadam Testing & Research Centre
- Large scale vapour cloud explosion experiments
 - 45 m long test rig
 - Flame acceleration in congestion generates pressure



History - Large Scale Experimental Studies

- DNV GL Spadeadam Testing & Research Centre
- Large scale vapour cloud explosion experiments
 - 45 m long test rig
 - Flame acceleration generates pressure
- Tests with propane & cyclohexane
 - Flame acceleration to Mach 2
 - Deflagration to detonation transition (DDT)
 - Sustained in open cloud

History

- The concept of DDT in 'real' VCEs with common hydrocarbons was not accepted.
- Industry settled on deflagrations in well defined congested regions
- Reasons given why DDT not considered relevant?

"Detonation would not be sustained in open cloud" "Conditions required would never be realised in a real incident"

"Damage from DDT would be much more severe than observed" "How can I possibly design against a detonation!!"

But then....

- Buncefield UK 2005
- Overfilling of gasoline tank
- Major vapour cloud explosion
- Damaged many storage tanks resulting in major fire
- Considerable civil damage claims

Overpressure Damage

Very little process congestion

Dense vapour cloud covering large area, much of it off-site

Widespread severe blast damage within the uncongested parts of the vapour cloud

Jaipur – October 2009

Ungraded

1000 Tonnes of gasoline spilled

Major vapour cloud explosion

Cloud area 3 times that of Buncefield

Buncefield

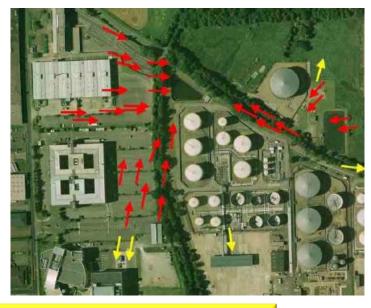
- Need to demonstrate that DDT is possible in the conditions in these incidents
- But this is not sufficient..... We need to examine the evidence in more detail.
- We need to show that the evidence occurs if and only if DDT has occurred
- As we will see, there is a qualification to this

Showing DDT is Possible

- Experiments in tree congestion:
 - Low density:
 - Reaches limiting flame speed at sub-sonic
 - Low pressures
 - High Density:
 - Continuous flame acceleration to DDT
 - Short distance of flame propagation as little as 12m from point of ignition
 - Sustained when flame emerged from vegetation

Evidence from Incidents

- CCTV records helpful but not decisive
- Pressure damage inside and outside the vapour cloud
- Directional indicators


Directional Indicators

- Critical evidence inside the cloud
- Arrow gives direction of explosion
- Reverse expanding flow is the cause

Directional Indicators

 Consistently point towards location of DDT

Similar directional indicators can be caused by fast deflagration

Critically, only a detonation can do this in an open area

May not be seen if cloud hemispherical – relies on reverse flow of combustion products

Jaipur

Buncefield

(red inside the cloud, yellow outside)

DNV GL © 2016 22 September 2016

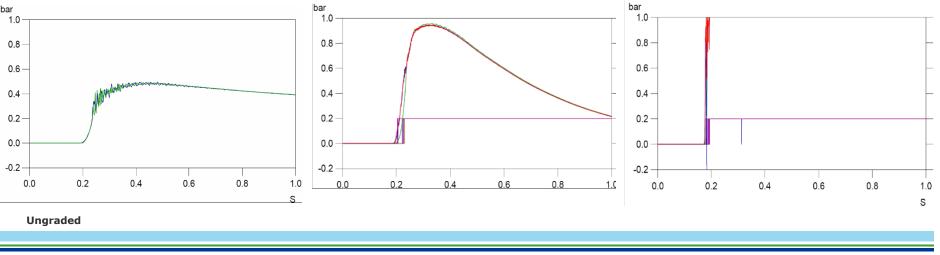
Ungraded

DNV GL

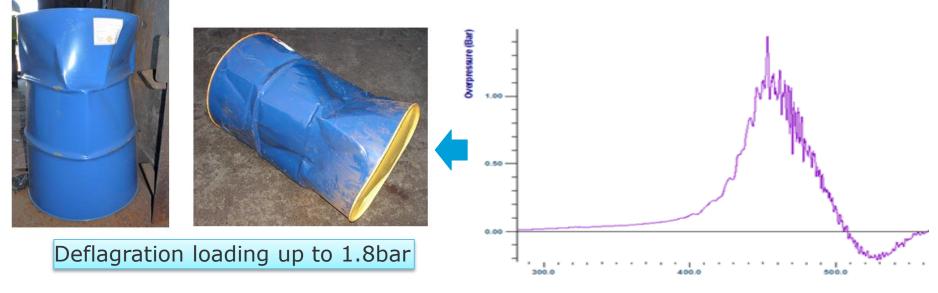
Experimental Studies

- Detonation tests Spadeadam
 - Propane air cloud detonation initiated by small explosive charge
 - Shock loading
- Explosion chamber tests Spadeadam & HSL
 - Slower rise time
 - Longer duration

Damage to Cars – Short Duration Shock Loadings


Damage to Cars – Long Duration Pressure Loadings

- Experiments carried out at Health & Safety Laboratories in an explosion chamber
- Long duration pressure loadings



Damage to Oil Drums

Shock loading up to 4.4bar

Damage to Oil Drums

Shock loading up to 4.4bar

Deflagration loading up to 1.8bar

Conclusions

- High pressures needed to cause the observed damage
- High speed (supersonic) deflagration could cause such damage
- When observed in the open, detonation is the only known mechanism that an result in the damage
 - This is the qualification!!
- Directional indicators will be seen in low level clouds, not hemispherical

Other Incidents

Amuay, Venezuala

Stoichiometry

Large scale experimental evidence relates to stoichiometric fuels
Fuels are the most detonable

Supersonic flames needed to explain damage


Likely to need concentrations close to stoichiometric
Even if ignited in rich or lean mixtures, DDT will occur as soon as a 'pocket' near stoichiometric is reached

Sustained detonation

Removes deflagration sensitivity to fuel concentration and congestion variations
Will continue through all detonable concentrations

Why Does it Matter

- Current methodologies are based around congested regions
 - Not unreasonable conclusion given outcome of research into flame acceleration
- These may not properly represent the risks to personnel
- Including the potential for detonation in the assessment process, can make a difference to facility design

25 DNV GL © 2016 22 September 2016

Conclusions

- DDT has occurred in VCEs:
 - Explains widespread severe damage observed in incidents
 - Removes sensitivities deflagrations have to concentration and congestion fluctuations
- Based on experimental evidence, it is difficult to understand why many major vapour cloud explosions could not have involved DDT
- Guidance and assessment methods need to be improved to assist industry
- Guidance also needs to be provided on the interpretation of evidence from incidents

Thank you for your attention

michael.johnson@dnvgl.com +44 20 3816 4990

www.dnvgl.com

SAFER, SMARTER, GREENER