A brief history of LNG and natural gas hazard research - what are the remaining challenges?

Geoff Chamberlain, Waverton Consultancy Ltd 55th UKELG meeting 26 April 2016

There is much to cover in 20 minutes

- LNG source term.
- Dispersion, passive and jet.
- RPT
- Pool formation and fires
- Jet fires
- BLEVEs
- Deflagration and detonation.
- Cold brittle failure
- Asphyxiation
- Roll over

LNG source terms

- Jets liquid, spray, 2 phase.
- Many models, but little validation. Liquid outflow may persist along long pipes.
- A pool is assumed to form. But pressurised LNG may not 'rain out'.
- Effect of waves and currents on pool spreading.
- Effect of RPTs.
- Effect of scale.
- Heat transfer rate to LNG.
- Ice formation. Favoured by still, shallow water.
- Water ingress into LNG tanks of ships.
- See HSE RR789.

Summary of largest LNG spill tests

Project	Spill Size, m ³	Rate, m ³ /min	Pool radius, m	LFL distance, m
Esso 1972	0.8 - 10.8	9 - 17.5	7-14	400
Maplin 1980	5 – 20	1.5 - 4	10	190
Avocet 1978	4.2 - 4.5	4	6 7.2	220
Burro 1980	24 – 39	11.3 - 18.4	5	420
Coyote 1981	8 – 28	14 – 19	NA	310
Falcon 1987	20.6 - 66.4	8.7 - 30.3	NA	380
Phoenix 2011	58 - 198.5	7.3 - 115 (51-802 kg/s)	10.4 - 42	NA

Summary of accident and sabotage scenarios

Scenario	Breach size, m ²	Spill rate, m ³ /min
Accidental collision	0.5 - 2	300
Intentional	0.5 - 12	1500

Dispersion – dense gas

- Many models
- CFD FEM3
- Lagrangian non-linear Puff Model SCIPUFF
- Shallow-Layer model TWODEE
- 1D Integral models SLAB, HEGADAS, DEGADIS, GASTAR.
- Empirical models based on Gaussian puff/plume models.
- Daish, R.E. Britter, P.F. Linden, S.F. Jagger, and B. Carissimo (2000) "SMEDIS: scientific model evaluation of dense gas dispersion models", Int J Environment and Pollution Vol. 14 No1-6, 39-51.

Dispersion - jet

 5kg/s at 3.5 to 7 bar, 25 mm hole, horizontal, no rain out and LFL up to 80 m.

RPT

- Spontaneous, delayed, triggered.
- Spontaneous condition: $0.9 \le T_w/T_c \le 1.0$
- Pure CH₄, $T_c \approx -83^{\circ}$ C, $T_{slt} \approx -106^{\circ}$ C
- Delayed RPT, predicted methane < ~40%, but not so for large tests.
- Triggered RPT, by explosives, waves, momentum of spilled LNG, RPT elsewhere.
- Energy released sufficient to deform but not to breach ship.
- No RPTs with liq. propane or hydrogen.

LNG Pool fires - average SEP

LNG Pool Fires – Phoenix Tests

Burn rate = $0.146 \text{ kg/m}^2/\text{s}$

LNG - 10 m SNL 2005

LNG - 21 m SNL 2009

LNG - 83 m SNL 2009

LNG Pool Fires – Phoenix Tests

- 50.8 kg/s average discharge rate.
 - Equiv diameter 20.7 m
 - Average length 70 m
 - Average height 34 m
 - Average F factor 0.21<u>+</u>0.4
- 802 kg/s average discharge rate.
 - Equiv diameter 83 m
 - Average length 146 m
 - Average width 15 m above pool, 56 m
 - Average F factor 0.24<u>+</u>0.8
 - Flame did not attach to pool edges.

LNG Pool Fires – Phoenix Tests

Ice and hydrate formation shown after the test.

LNG Pool Fires

- Large spills on shallow, still water create ice and hydrates. Not so important for deep, wavy water.
- Fire does not attach to edges of pool.
- Fire will attach to structures in the water, e.g. ship, harbour wall.
- No evidence of smoke shielding, hence high SEP.

LNG jet fires

- 5 kg/s LNG horizontal release, jet fire 25 m.
- This is similar to a 5 kg/s natural gas flame.
- No rain out.

Natural Gas Jet Fires

- Many tests in the 1 70 kg/s range,
- Flame lengths 10 70 m,
- F factors around 0.12 0.25
- SEP \approx 300 kW/m²

Natural Gas Jet Fires – effect of scale?

- Consider a NG pipeline full bore break.
- What is the flow rate and time dependence?
- What is the flame size and shape?
- Effect of crater for buried pipelines?

Natural Gas Jet Fires at Large Scale

 The flame becomes buoyancy dominated about halfway along its trajectory. (Ricou and Spalding 1961).

Buried Natural Gas Pipelines

• Craters – OGP434-7, 2010

GRI of Canada proposed hazard radii for full bore natural gas pipeline ruptures.

LNG BLEVEs

- LNG stored at atm. P will <u>not</u> BLEVE.
- 2 accidents both in Spain involving pressurised storage in a road tanker.
- 2002, tanker overturned, 20 min to BLEVE.
- 56 m³, design P. 7 bar, 4-6 mm thick SS single wall, 85% full.
- Failure attributed to liquid expansion.

LNG BLEVE accident 2011

- Same design as before.
- BLEVE in 71 mins. Caused by failure of vessel wall by flame impingement.
- 150 m diameter fireball.

LNG BLEVEs – Shell Tests

 5 m³ vessel, 6.1-13.6 barg, vessel rupture on top surface by explosive charge.

37% fill, 13 barg 67% fill, 6.1 barg 69% fill, 13.6 barg

LNG BLEVES – fireball duration and diameter

LNG BLEVES – Fireball Surface Emissive Power

Experiment #	SEP Range (kW m ⁻²)	SEP 3 s after rupture (kW m ⁻²)
2	450-650	540
3	250-350	290
4	400-550	475

SEP higher than for LPG BLEVEs, (less smoke obscuration).

LNG BLEVEs – Shell work

- Empirical models based on LPG are conservative, but not overly so.
- Thermal radiation levels are slightly less than LPG BLEVEs.
- Overpressure is also slightly less owing to lower expansion velocities.

Natural Gas Deflagrations and Detonations

- Very few major explosions with natural gas/methane. Mainly from pipeline failures.
- But many domestic incidents. Confinement rather than congestion, seems to be a key player.

Natural Gas Deflagrations and Detonations

- Many experiments performed.
- Damaging deflagrations when methane is confined.
- Congestion must be severe for damaging blast.
 45 m, 40% blockage, 1.5 m spacing, steady flame of 80 m/s.
- Jet ignition into congestion, can sustain high flame speeds (1000 m/s → 500 m/s), but not detonation.

Methane/Natural Gas Detonations

- Methane, ambient, stoichiometric in air
 - Initiation energy 22 kg tetryl, natural gas 3.5 kg.
 - Cell size 190-350 mm.
 - Critical explosion diameter 4 m.
 - Bradley et al. (2008) theorise that no DDT is possible in ducts (assumed no reflected, transverse shock waves).
- BUT, experiments carried out in the GETF (73m long, 1.05m wide duct with baffles) with natural gas show:
 - Sustained detonations 8-10.8% NG/air.
 - $L_{ddt}/D \approx 16-23$
 - Cell size λ 27-50 cm + 30%
 - $D/\lambda > 1$
 - $L_{ddt}/\lambda > 5-7$

Fig. 13. Slow flame, fast flame, and DDT limits as function of composition and tube diameter at normal conditions p = 1 bar and T = 293 K (after Kuznetsov et al. [27]). Natural gas-air data from these tests added at D = 1050 mm.

Natural Gas Deflagrations and Detonations – BFETS JIP 1995

Natural Gas Deflagrations and Detonations – BFETS JIP 1995

- With ignition at one open end:
- Maximum overpressures up to 65 bar.
 Duration < 1 ms.
- Several tests, overpressures 13 to 22 bar at end of rig. Durations <1 ms.
- DDT?

Summary 1 – LNG/natural gas knowns

- Dispersion to LFL if source term is known.
- RPT overpressures.
- LNG pool fires up to 60 m diameter.
- LNG and natural gas jet fires up to 100 kg/s.
- LNG BLEVES.
- Deflagrations, confined and congested.

Summary 2 – LNG/Natural gas Challenges

- Source terms.
- Effect of waves, water depth, RPT, wind on pool and fire size.
- Scaling :
 - pool sizes,
 - pool fire size,
 - Natural gas jet fires from full bore pipe ruptures,
 - Deflagration to natural gas/methane detonation in ducts and congested plant.