

Modelling in FLACS Activities and prospects

Trygve Skjold R&D Director

Outline

- Introduction
- Activities
- Prospects

Summary

Confinement Congestion

Acknowledgements

Background

- Gexcon develops the computational fluid dynamics (CFD) code FLACS
- FLACS includes the porosity / distributed porosity (PDR) solver Flacs for simulating flow phenomena in complex geometries
- FLACS is primarily an engineering tool used for consequence analysis and design of riskreducing measured in the process industry

Risk management

General flow diagram for risk analysis, risk assessment and risk management:

FLACS

Gexcon R&D

GexCon R&D develops the CDF/PDR solver Flacs

Currently 13.2 developers: 7 PhDs + 4 colleagues currently pursuing PhDs

Integrated validation framework

54th UKELG – "Advances in Explosion Modelling" – Friday 30 October 2015

FLACS

JIP MEASURE

Modelling Escalating Accident Scenarios and the Use of Risk-reducing technology for Explosion safety

Fundamental aspects of fuel-air explosions

Experiments at HiT

- Part of Hy3DRM project
- The goal is to characterize flow and turbulence in wakes downstream of bluff bodies during explosions
 - High-speed camera + laser sheet
 - Particle image velocimetry (PIV)
- Limited data available: CMI, Imperial College, Loughborough, etc.
- Important for validating subgrid models in CFD tools

Parameter optimization

- Industry PhD project
- Established cooperation with optimization group at University of Bergen

Dust explosion modelling

- Industry PhD project continuing the work from the DESC project
- Established cooperation with FSA in Germany and University of Greenwich (Stefan Zigan and Lahiru Lulbadda Waduge)

FLACS

Particle-laden flow

 10^{-2}

10⁻³

4-way coupling

54th UKELG – "Advances in Explosion Modelling" – Friday 30 October 2015

FLACS

Mist explosion modelling

- Industry PhD project continuing the work from previous work on transformer explosions etc.
- Established cooperation with Cardiff University (Prof. Philip J. Bowen)
- Flame propagation in ethanol mist:

FLA(

Compressor in ISO container

Inside the container

www.hysea.eu

HySEA

- Improving Hydrogen Safety for Energy Applications through pre-normative research on vented deflagrations
- Call: H2020-JTI-FCH-2014-1-FCH-04.3-2014 "Prenormative research on <u>vented deflagrations</u> in <u>containers</u> and enclosures for <u>hydrogen energy applications</u>"
- Consortium: Gexcon (Coordinator), University of Warwick, University of Pisa, Fike Europe, Impetus Afea and University of Science and Technology of China (USTC)
- **Start-up date**: 1 September 2015 (three-year duration)
- Further & updated information: <u>www.hysea.eu</u>

Flacs 3: Initiated work on AMR solver

Apollo Blast simulator (courtesy of Arno Klomfass, Fraunhofer EMI)

Beyond explosions

- CFD tools such as FLACS are routinely used for quantitative risk assessment (QRA).
- The modelling of complex 3D geometries in typical process facilities represents a significant investment for the owners and/or operators of the plants.

Example: Medium-congested geometry with low degree of confinement

Risk management

Risk management is *"the business of believing only what you have the right to believe"* DeMarco & Lister (2003): "Waltzing with Bears"

FLACS

What do we have the right to believe?

 The Monthly meeting in London's elite Metaphysical Society at Grosvenor Hotel, London on 11 April 1876
William Kingdon Clifford (1845-1879): «The Ethics of Belief»

"It is wrong always, everywhere, and for anyone, to believe anything upon insufficient evidence." W. K. Clifford

- The purpose of risk assessments include:
 - Systemizing knowledge and uncertainties about phenomena, processes and activities in systems,
 - Describing and discussing the results of the analysis in order to provide a basis for evaluating what is tolerable and acceptable,
 - Comparing and optimizing different design options and risk reducing measures.
- There is significant uncertainty associated with most risk assessments – however, this may be of secondary importance as long as the use of procedures and information* is consistent. * Data, Assumptions, Knowledge, etc.

- Numerous factors influence the level of safety an organization can achieve for a given system:
 - Safety culture
 - Potential for loss
 - Maturity of the technology
 - Risk perception / awareness
 - Safety functions and processes
 - Safety training & emergency preparedness
 - Relevant standards and legislation
 - etc.

Hierarchy of principles for risk reduction:

- Inherent safety
- o **Prevention**
- Passive mitigation
- Active mitigation
- Procedural safety
- 0 ...

- Statistical records from accidents and near misses demonstrate that engineered safety and administrative procedures cannot replace risk awareness, competence and a healthy safety culture:
 - Human errors account for about 80 percent of all events – only 20 percent involve equipment failure [DoE].
 - About 70 per cent of the events caused by human error can be traced to latent organizational weaknesses – only 30 percent are due to mistakes by individuals [DoE]

- Management of the operational risk* in industrial facilities should take into account:
 - The risk analysis/assessment
 - Previous events and near misses
 - Safety barriers / risk-reducing measures
 - Modifications and the age of the installation
 - Technological developments
 - The likelihood of natural disasters and malicious attacks
 - Safety culture, risk awareness, etc.

* **Risk management** refers to a coordinated set of activities and methods used to direct an organization and to control the risks that can affect its ability to achieve its objectives.

What if ...

- We could extend the use of detailed 3D models to other aspects of risk management than 'simple' QRAs?
- We could create a framework for risk management that facilitates learning in organizations through discussion and practice?
- We could use virtual site-specific geometry models, continuously updated ("as is", not "as built") in the daily operation of process plants?
- We could define the next paradigm in risk management!

Source: National Training Laboratories, Bethel, Maine

3DRM

54th UKELG – "Advances in Explosion Modelling" – Friday 30 October 2015

.

3D Risk Management (3DRM)

- 3DRM is an integrated risk management framework for a specific facility, characterized by interactive use of a detailed 3D geometry model, a CFD tool, and other models and libraries.
- Within the 3DRM framework, the quantitative risk assessment (QRA) becomes a (more or less) continuous processes that evolves throughout the lifetime of the facility.
- Realization of the 3DRM concept entails both development of software products and related consulting services.
- The 3DRM concept is inspired by Agile principles for software development, which put particular emphasis on people, teams, continuous integration and knowledge sharing in organizations.
- 3DRM is <u>not</u> an 'expert system'!

Schematic representation of 3DRM

Typical workflow for QRA part

- Importing (or manually constructing) the <u>3D geometry model</u> for the system.
- Identifying and registering inventory of hazardous materials in the virtual 3D model.
- Identifying and registering potential release locations in the virtual 3D model set up links to inventory.
- Identifying and registering potential ignition sources in the virtual 3D model.
 - Two main categories: Specified location (turbines, flares, etc.) and distributed (hot work, lightning, etc.).
- Identifying and registering main safety functions in the virtual 3D model (post-processing)
- Registering personnel densities in virtual 3D model (post-processing personnel risk).
 - Registering relevant boundary conditions: terrain, wind rose, relevant codes and standards, ...
- Simulating selected scenarios (<u>automated process</u>):
 - Wind simulations provides the initial conditions for:
 - Release and dispersion scenarios (flammable/toxic) provides the initial conditions for:
 - Detector optimization studies based on 3D concentration probability density functions, and
 - Simulation of jet and pool fire scenarios, and
 - Simulation of gas explosion scenarios, and
 - Simulation of escalating accident scenarios.
- Estimating the effect (harm) to structures (including structural response) and main safety functions.
- Estimating the effect (harm) on personnel caused by physical parameters (personnel risk).
- Optimizing detector layout or other prevention and mitigation measures based on harm criteria.
- Calculating and visualizing risk contours in the virtual 3D model.
- Analysing results, implementing risk-reducing measures, ALARP, updating calculation, ...

FLA

Towards 3D risk management

- The 3DRM concept is not limited to QRAs, and operative use of the virtual 3D model may include aspects such as:
 - Visualization of the 3D geometry model, including metadata, in the control room, at training centres, on portable devices, etc.
 - Visualization of scenarios from QRA (training, ...), incidents, etc.
 - Hazardous area classification visualizing zones and equipment
 - Work permits highlighting specific areas during maintenance
 - Interactive training/site visits for employees, subcontractors, etc.
 - ISO 9000 compliance issue tracking, documentation, etc.
 - Gas detector optimization based on QRA various optimization criteria: detecting leak, minimizing damage, etc.
 - Emergency preparedness and emergency response: GPS tracking in 3D geometry, visualizing sensors and alarms, etc.
 - Etc.

Pros and cons of 3DRM

Advantages:

- Step-wise implementation
- Communication with and/or between stakeholders
- Competence building: CFD vs. Engineering models, …

Limitations:

- Implementation cost
- Not an 'expert system' (probably an advantage ...)
- Full implementation requires dedicated end-user

Case study

... while we are waiting for the dedicated end-user.

Generic filling station: 100 kg day⁻¹ reference [H2FIRST]

- Compressor in 20 ft. ISO container compresses hydrogen from tube trailer to high-pressure storage tanks.
- Simplified fault trees [HyRAM / Sandia reports] and event trees for selected accident scenarios:
 - 168 dispersion simulations
 - 168 jet fire simulations
 - 672 gas explosion simulations

FLACS simulations:

- o 1008 simulations
- $_{\odot}\,$ 2-3 days on HPC cluster

Hypothetical filling station

Example: Jet fire scenario

Heat radiation contours: $f > 10^{-6}$ yr⁻¹

Frequency contours: $Q_{rad} > 5 \text{ kW m}^{-2}$

54th UKELG – "Advances in Explosion Modelling" – Friday 30 October 2015

FLACS

Lethality frequency – jet fire

Frequency contours: $P_{ex} > 0.5$ bar

Over-pressure contours: *f* > 10⁻⁶ yr⁻¹

Summary

Modelling of explosions occurs at various levels:

- Detailed numerical simulations aimed at revealing fundamental physical phenomena.
- Pragmatic CFD modelling, often based on the porosity/distributed resistance (PDR) approach, aimed at providing engineering estimates for industrial design.
- Simpler engineering models, typically based on empirical correlations.

There is increasing focus on model validation:

- Providers of software products for safety applications need to document validation against relevant large-scale experiments.
- There is an urgent need for more reliable predictions (indications) of the occurrence of deflagration-to-detonation-transition (DDT) in large-scale complex geometries.
- Simulation of safety gap scenarios provides an interesting challenge for modellers.

The 3DRM concept from Gexcon has several advantages:

- It combines state-of-the-art CFD/PDR models and simpler engineering models
- The primary focus is on risk communication in organizations and between stakeholders

Acknowledgements

- The Research Council of Norway (RCN) supports the Hy3DRM project under the ENERGIX program, and the PhD projects under the Industry PhD funding scheme.
- Statoil, Total, ExxonMobil, ENGIE (GDF Suez), DNV GL and BP sponsor JIP MEASURE. The experimental campaign is conducted in cooperation with Shell.
- The European Commission supports the HySEA project through the Fuel Cells and Hydrogen Joint Undertaking (FCH 2 JU) under the Horizon 2020 Framework Programme for Research and Innovation.

Questions?

