

Steve Sherwen, ABB Consulting / 23rd September 2014 UKELG – University of Leeds

Hazardous Area Classification For Biomass in the Thermal Generation Industry

Introduction

- Background
- Traditional Standards
- Objective
- Experimental Testing
 - Methods
 - Results
- Practical Application
- Further Work

Background

- The Large Combustion Plant Directive (LCPD, 2001/80/EC)
 - Driving coal fired thermal PowerStations to find alternative fuels
- Dangerous Substances and Explosive Atmospheres Regulations 2002 (DSEAR)
 - Requires employers to carry out a risk assessment of activities where potentially explosive atmospheres can arise.
 - Areas must be classified into zones which dictates the standard of equipment that can be used.

Traditional Approach to Dust Classification

- IEC 60079-10-2
 - Purely qualitative assessment
- Zone 20
 - Inside containment only
- Zone 21
 - Typically 1m radius
- Zone 22
 - Typically 3m radius but if house keeping poor, can be huge.
 - Potentially the entire enclosure.

Flammable Properties - Dusts Vs. Vapours

- Dusts can ignite in either layer or cloud form – one a fire risk the other an explosion risk
- Dusts and vapours behave differently:
 - Dispersion of vapour can be calculated
 - Gas or vapour cloud more easily dispersed by ventilation
- Dust emission creates cloud, settles as layer but can be disturbed as a cloud again
 - Risk assessment and Area classification should take this into account

Objective of this project

- To establish the LEL and other pertinent explosion data for biomass
- To review standards and other work to suggest a novel approach to the classification of biomass plant and other large, dusty processes.

Experimental Testing

- 1m³ vessel (actually 1.138m³!)
- Following the methods in the BS EN 14034 suite of standards
- Differences for biomass
 - 10L holding pot
 - Biomass dispersion
 - Dispersion pressure halved to 10Barg

Material Tested

- Spruce wood dust taken from the dust extraction collectors at a PowerStation.
- BS EN 14034-3 does not specify a particle size for testing but ISO 6184-1 states that the particle size should be below 68um
- Material was fibrous and dry.

Hard weeks work!

Results - LEL, P_{max} and K_{st}

Results –K_{st} of Biomass Vs. Coal

Results - Material data

Figure 2-3.4.2.1 Effect of average particle diameter of a typical agricultural dust on the minimum ignition energy. (Unpublished data courtesy of U.S. Mine Safety and Health Administration.)

Issues with the results

- Quantities of unburnt material
- Amount of material injected
- Variability of LEL Huescar (2013) has MEC of 35g/m³

Application of the results

- LEL of this material is high compared to other dusts
- Worst case tested (fine, dry dust)
- Large deposits of dust needed to enter flammable region in a large building
- Difficult to get a external dust cloud externally without a catastrophic event initiating the cloud.

Area 50 x 50m	2500 m ²
Dust Layer thickness	2mm
Bulk density	250 Kg/m ³
Floor area covered with dust	10%
Mass of dust	125Kg
Height of building	10m
Volume of building	25000 m ³
Concentration	5g/m ³
	-

Dust Flammability

Equipment installed after 30 June 2003

- Only ATEX compliant equipment can be installed in the zoned areas.
- The installation of noncomplaint equipment is not permitted.
- Certified equipment is generally more expensive to buy and requires specialist inspection, maintenance and repair

Dust Area Classification

- Difficult to get into the flammable region outside equipment
 - Case studies of an external primary explosion are rare.
- The disturbance of a dust cloud by a primary explosion to create a secondary explosion would not be prevented by external zoning.

Dust Area Classification (2)

- Lofted dust forming a cloud in the flammable range through smaller failures are unlikely to remain airborne long enough to be ignited in the open air, Eckhoff (2000).
- Dust cloud can only be created by additional aeration of a deposit
- Much un-certified equipment cannot ignite dust clouds
- DSEAR and standards are wrong in treating combustible dust the same as flammable gas

Conclusion Is Certified Dust Equipment Needed Externally?

- Can the dust enter the enclosure?
 - Can it then be re-aerated?
 - By the time this has happened is there still a dust cloud outside?
- Is the equipment accessible for cleaning
 - Light fittings may need to have a temperature limit due to being inaccessible and a fire risk

Any questions?

Steve.Sherwen@gb.abb.com Tel: +44 1925 741280 / +44 7990 627548

Power and productivity for a better world[™]

