

Flameless Venting - Dust Explosions

Paul Holbrow Health and Safety Laboratory

Dust explosions

- Dust explosion research programme
- Flameless venting
- Background
- Test equipment and programme
- Results
- Conclusions

Dust Explosions

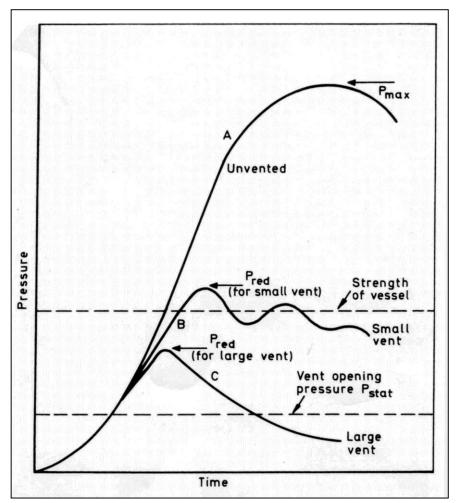
7 February 2008 Sugar dust explosion in Georgia USA. 14 killed

20 August 1997 Flour explosion in Blaye France 11 killed

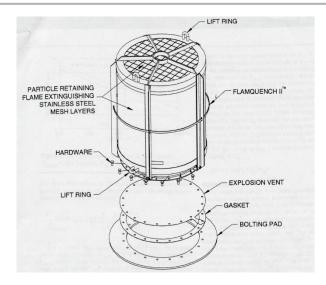
Dust Explosions - background

- Explosible dust
- Particle size
- Oxidant
- Dust concentration
- Ignition source

Explosion venting


Explosion protection by venting: venting protective systems

- Venting enclosures
- Vent sizing
- Influence of vent ducts
- External flame and pressure


BS EN 16009:2011 Flameless explosion venting devices

BS EN 14491:2006 Dust explosion venting protective systems

BS EN 14797:2006 Explosion venting devices

Test Dusts

Dust	HSL reference	K _{st} (bar.m.s ⁻¹)	P _{max} (barg)	MIE (mJ)	MIT 5 mm dust layer (°C)	MIT dust cloud (°C)	Moisture content (%w/w)	Particle size distribution
Wheat flour	EC/107/09	138	8.0	30 - 100	No ignition at 500°C	400	11	100% < 180µm 65.9% < 106µm 10% < 63µm
Cornflour	EC/084/09	147	7.9	30 - 100	No ignition at 500°C	370	13.5	100%<63µm
MDF wood dust	EC/074/09	113	10.4	10 - 30	375	420	7.6	62.5%<500μm 49.2%<250μm 44.1%<180μm 31.4%<106μm 15.9%<63μm
Polyethylene powder	EC/072/10	167	7.5	10 - 30	Melts	470	1.0	100%<63µm

Flameless explosion venting test equipment

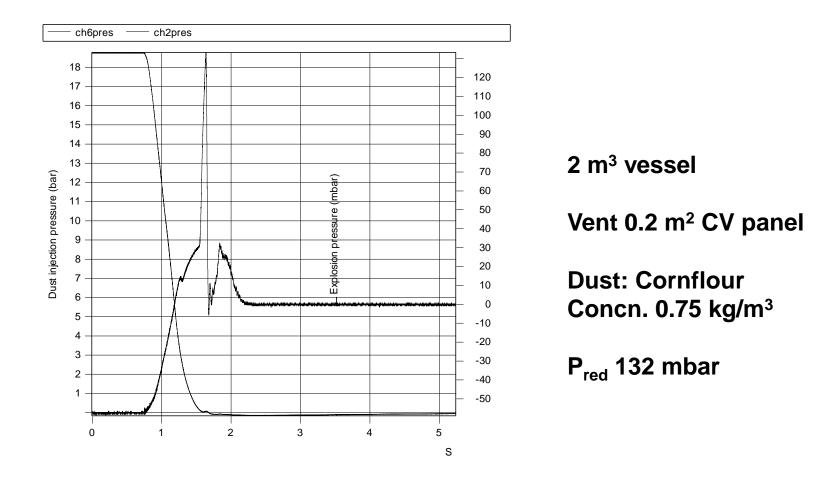
2 m³ explosion test vessel with rectangular CV explosion vent panel

0.4 m x 0.5 m vent

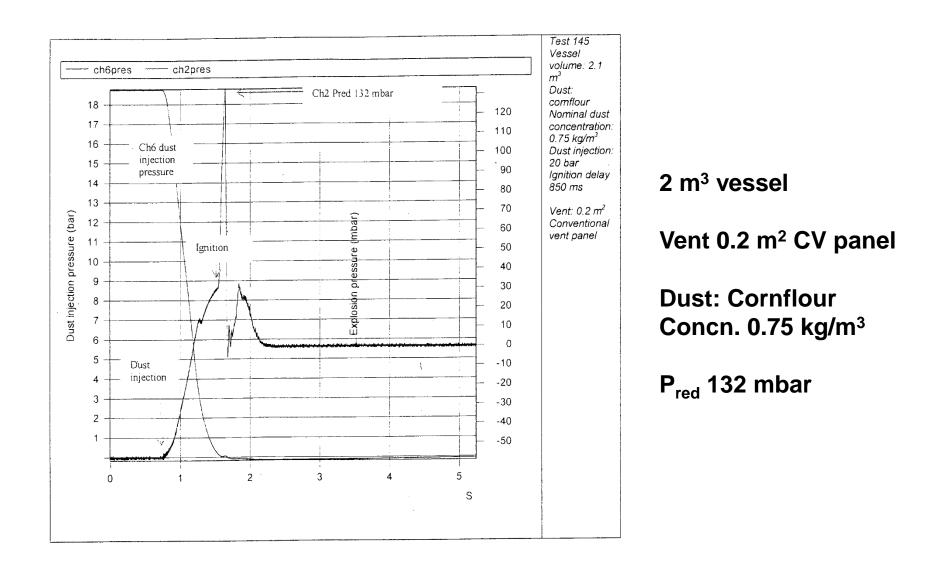
 P_{stat} 0.1 barg

2 m³ explosion test vessel with flameless explosion vent assembly (including explosion vent panel)

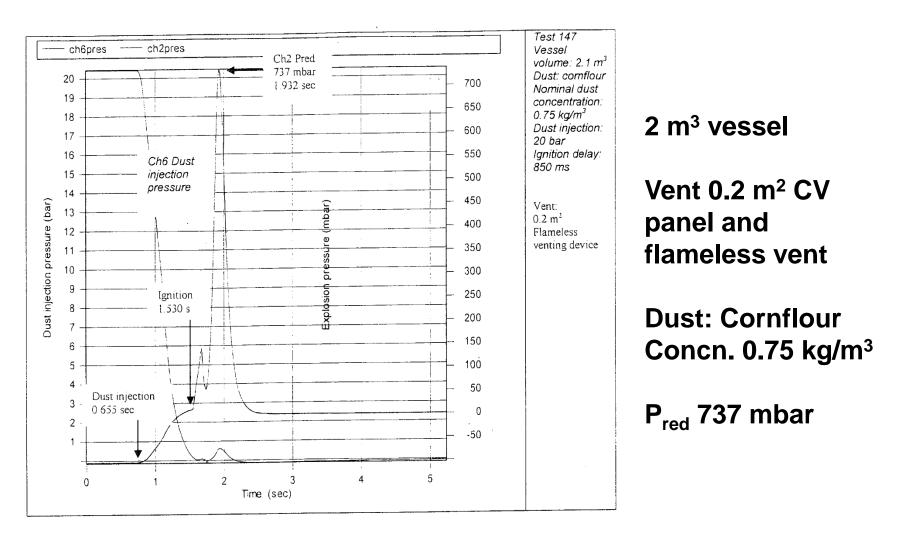
Flameless explosion venting test equipment


4 m³ explosion test vessel with two 0.2 m² rectangular CV explosion vent panels and flameless venting devices

- Tests generally in accordance with the principles of BS EN 14797:2006 and BS EN 16009:2011.
- BS EN 14491 used to establish the test conditions. The vent cover has a specific mass <0.5 kgm⁻².
- Using the test conditions and the measured P_{red}, K-value is calculated for the explosion.
- The test is repeated with the conventional stainless steel bursting panel and with the flameless venting device.
- The P_{red} in the vessel measured.
- Temperatures at the surface of the flame arrestor and at 1 m.
- Noise measurements and peak external pressures at 1 m and 5 m.



- Initial tests development of test method using 2m³ vessel and 0.2 m² vent opening.
- The dust injection system was modified to achieve a dust injector volume/vessel volume ratio closer to that used in BS EN 14034-2:2006.
- Time delay between dust injection and ignition was modified. It was found that 600- 850 ms was required to achieve total injection of the dust.
- Vacuum system introduced partial evacuation of the vessel prior to dust injection.



HEALTH & SAFETY LABORATORY

HEALTH & SAFETY LABORATORY

Test	Dust	Test chamber volume (m ³)	Vent area (m ²)	Vent type	Ignition delay (mbar)	P _{red} (mbar)	Vent opening pressure (mbar)	Venting efficiency (%)
144	EC/074/09 (MDF wood dust)	2.1	0.2	Fike vent panel and flameless venting device	850	525	130	62
147	EC/084/09 (Cornflour)	2.1	0.2	Fike vent panel and flameless venting device	850	737	142	47
152	EC/072/10 (polyethylen e)	2.1	0.2	Fike vent panel and flameless venting device	850	376	100	85
154	EC/107/09 (Wheat flour)	2.1	0.2	Fike vent panel and flameless venting device	850	123	100	100

Test	Dust	Test chamber volume (m ³)	Vent area (m²)	Vent type	Ignition delay (ms)	P _{red} (mbar)	Vent opening pressure (mbar)	Venting efficiency (%)
130	EC/084/09	4	0.4	Fike vent panel and flameless venting device (x2)	850	321	124	75
131	EC/074/09	4	0.4	Fike vent panel and flameless venting device (x2)	850	463	129	57

Flameless explosion venting – external effects

Test 46

2 m³ vessel

0.2 m² CV panel

Cornflour 0.75 kg/m³

Test 47

2 m³ vessel

0.2 m² flameless vent

Cornflour 0.75 kg/m³

Flameless explosion venting – external effects

Flameless explosion venting – external effects

Flameless explosion venting – external effects

Test	Dust	Vessel volume (m ³)	Vent area (m ²)	Vent	Peak SPL at 1 m (dB)	Pressure at 1 m (mbar)	Peak SPL at 5 m (dB)	Pressure at 5m (mbar)
129	EC/074/09 (Wood dust)	2.1	0.2	Flameless vent	140	2	120	0.2
130	EC/084/09 (Cornflour)	4	0.4	Flameless vent (x2)	139	1.8	132	0.8
131	EC/074/09 (Wood dust)	4	0.4	Flameless vent (x2)	139	1.8	120	0.2
134	EC/074/09 (Wood dust)	2.1	0.2	Flameless vent with dust cover	148	5	128	0.5
135	EC/084/09 (Cornflour)	2.1	0.2	Flameless vent with dust cover	142	2.5	124	0.3
144	EC/074/09 (Wood dust)	2.1	0.2	Flameless vent	121	0.22	116	0.13
147	EC/084/09 (Cornflour)	2.1	0.2	Flameless vent	121	0.35	116	0.13
152	EC/072/10 (Polyethylene)	2.1	0.2	Flameless vent	150	6.3	108	0.05

Flameless explosion venting external effects

- Maximum surface temperature at the flame arrestor mesh of 203 degree C.
- Manikin located at 1 m from the device not blown over and no visual burn damage to polypropylene coverall (melting point 160-165 degree C).
- External noise measurements at 1 m and 5 m from the device resulted peak SPL 150 dB at 1 m and at 5 m peak SPL 132 dB.
- Dust cover slightly increased to noise levels but did not increase the P_{red.}
- External pressures at 1m and 5 m from the device resulted in peak values of 6.3 mbar and 0.8 mbar respectively.

- Demonstrated flame extinguishment of vented St1 dust explosions.
- Higher P_{red} values with corresponding reduction in venting efficiencies.
- Cornflour produced the lowest venting efficiency.
- Presence of a dust cover on the flameless venting device did not impede the venting process.
- Adequate provision needs to be made to protect personnel from the effects of combustion products, noise and temperature.
- Careful consideration needs to be given to process conditions during the design and selection of flameless venting devices.

This work was funded by the Health and Safety Executive (HSE). Any opinions and/or conclusions expressed, are those of the author alone and do not necessarily reflect HSE policy.

Fike Europe provided the flameless venting devices, vent panels and expertise and their assistance is gratefully acknowledged.

Thank you for your attention.