Explosibility characteristics of wood biomass dust, torrefied biomass, coal and coal/biomass mixtures

> Clara Huéscar Medina Co-workers: H.N.Phylaktou, G.E. Andrews, B.M. Gibbs

UKELG 52nd Discussion Meeting: Dust Explosions 23rd September, 2014. University of Leeds

Introduction

- Coal: Generates 41% of the world's electricity
- Biomass: CO₂ neutral
- **Torrefied biomass**: upgraded biomass
- 200-300°C in the absence of oxygen for a certain residence time
- End product is similar to low rank coals: Increased CV, more easily ground, hydrophobic
- Mixtures Coal/biomass or torrefied biomass

				1	
	Southern Pine	Torrefied Southern pine	Kellingley Coal	Colombian coal	
Elemental Analysis (wt%) ^{ar}					
С	48.4	54	65	66.6	
Η	5.4	5.2	4.1	4.3	
O *	38.1	32.5	5.5	7.8	
N	0.6	0.7	2.4	2.1	
S	0	0	2.2	0.7	
Proximate Analysis (wt%)ar					
Moisture	5	3.3	1.7	3.2	
VM	78.5	70.3	29.2	33.7	
FC	14	22.1	50	47.8	
Ash*	2.5	4.3	19.1	15.3	
VM/FC	5.6	3.2	0.6	0.7	
A/F	6.3	7.2	11.3	11.1	
A/F ^{daf}					
(g/m^3)	190	166	106	108	
GCV ^{daf}					
(MJ/kg)	21	23.4	33.8	33.5	
Bulk density	268 4	A15 A	113	407.4	
$(\mathbf{K} \mathbf{g} / \mathbf{m})$	200.4	413.4	443	40/.4	

Coal sample	K _{St}	\mathbf{P}_{\max}	MEC
Morwell coal	220	7.6	-
Brown coal	151	10.0	-
Yallourn dark	91	6.7	-
Prince mine coal	44	6.5	70
Phalen mine coal	30	6.0	120
Lingan mine coal	44	7.0	90
Russian anthracite	68	5.0	-
Sulcis lignite	162	6.8	-
South African coal	81	6.0	-
Polish coal	135	6.8	-
Snibston coal	149	6.5	-
Spanish lignite	107	8.8	90
German lignite	105	8.7	60
Pittsburgh coal	41	6.7	65
Pocahontas coal	31	6.5	80
Sebuku coal	114	6.6	63

 K_{St} =30-220 barm/s P_{max} =5-10 bar MEC= 60-120 g/m³

Fuel	K _{St} (barm/s)	P _{max} (bar)	MEC (g/m ³)
Cork	179	7.2	40
Walnut shells dust	105	9.4	70
Pine nut shells dust	61	8.9	-
Pistachio shells dust	82	9.3	90
Wood	115	8.6	30
Bark	132	9.0	30
Forest residue	87	8.6	60
Spanish pine	44	7.7	90
Barley straw	72	7.9	90
Miscanthus	53	7.8	120
Sorghum	41	7.3	120
Rape seed straw	23	6.7	210
Wood dust (beech and oak mix)	136	7.7	-
Forest residue (bark and wood)	92	9.1	20
Wood dust	87	7.8	-
Wood dust, chipboard	102	8.7	60
Wheat grain dust	112	9.3	60
Olive pellets	74	10.4	125
Cellulose	66	9.3	60
British Columbia wood pellets	146	8.1	70
Nova Scotia wood pellets	162	8.4	70
Southern yellow pine wood pellets (USA)	98	7.7	25
Wood dusts	208	9.4	-
Fibrous wood	149	8.2	20
Sawdust	115	9.0	-

 K_{St} =23-208 barm/s P_{max} =6.7-10.4 bar MEC= 20-210 g/m³ $Y (wt\%) = x_{biomas} Y_{biomass} (wt\%) + x_{coal} Y_{coal} (wt\%)$

Fuel	K _{St} (barm/s)	P _{max} (bar)	MEC (g/m ³)
Wood dust	115	8.6	30
German Lignite	146	8.6	60
Mixture (25/75)	111	8.4	90
Barley straw	72	7.9	90
Spanish lignite	164	8.6	90
Mixture (25/75)	137	8.4	150
Wood dust	87	7.8	-
Black lignite	105	7.7	-
Mixture (25/75)	104	8.8	-

Objectives

- Determine explosion characteristics K_{St} , P_{max} (Dust size <63 μ m)
- Determine combustion properties: flame speeds, burning velocities, heat release rates
- Determine the changes in combustion/explosion properties induced by torrefaction and by mixing of fuels

K_{St}

Correlation of K_{St} and fraction of fines

P_{max}/P_i: Biomass/coal mixtures

K_{St} Torrefied biomass/coal mixtures

P_{max}/P_i: Torrefied biomass/coal mixtures

Summary Explosion characteristics

	K _{St} (barms ⁻¹)	P _{max} /P _i	S _{FT} Turbulent Flame Speed (m/s)	S _L Laminar burning velocity (m/s)	
ECNR	109	9.0	3.7	0.10	
ECNT	138	9.1	5.6	0.15	
RWER	81	8.8	3.4	0.10	
RWET	95	8.9	3.6	0.10	
NBER	105	9.0	4.5	0.12	
NBET	115	8.8	4.4	0.12	
S2SR	96	9.0	3.8	0.10	
S2STA	110	9.1	4.6	0.12	
S2STB	111	8.7	4.2	0.12	
S2STS	122	9.0	5.1	0.15	
Kellingley Coal	78	8.2	3.7	0.12	
MIXTURE (by mass)					
Kellingley Coal+TM8S (50/50)	96	8.4	4.1	0.12	

Summary explosion characteristics

	K _{St} (barm/s)	P _{max} /P _i	S _{FT} Turbulent Flame Speed (m/s)	S _L Laminar burning velocity (m/s)	
Colombian Coal	129	8.5	5.2	0.16	
Pine wood pellets	87	8.7	3.4	0.1	
MIXTURES (by mass)					
Mixture A (5% PWP, 95% CCB)	125	8.6	5.6	0.17	
Mixture B (15% PWP, 85% CCB)	123	8.6	5.3	0.16	
Mixture C (20% PWP, 80% CCB)	147	8.7	6.3	0.18	
Mixture D (40% PWP, 60% CCB)	149	8.6	6.3	0.18	

Correlation of Flame speeds and K_{St}

Flame speeds, burning velocity and HRR

Conclusions

- Torrefied biomass showed higher K_{St} and P_{max} than raw parent biomass
- Occasional synergistic effect in mixtures
- Linear relationship S_F and K_{St}
- Factors affecting reactivity related to rate of reaction (particle size, surface area)

The authors are grateful to the Energy Program (Grant EP/H048839/1) for financial support. The Energy Program is a Research Councils UK cross council initiative led by EPSRC and contributed to by ESRC, NERC, BBSRC and STFC.

