

Cranfield

Measuring Radiated Thermal Output from Pyrotechnics and Propellants

Mike Williams

Department of Engineering and Applied Science Cranfield University at the Defence College of Management and Technology m.r.williams@cranfield.ac.uk

Topics

- Use of Surface Mounted Thermocouple heat flux gauges.
- Short and long duration heat flux.
- Estimating Fireball Surface Temperature.
- Estimating percentage of possible heat that is radiated.
- Blast wave perturbations.

Measuring Heat Flux with Surface Mounted Thermocouples

"Fast" response gauges are very thin (5 micron), buttjoined, thermocouples bonded flat to a ceramic

surface (we use MACOR[™]).

No cooling is required. They are rugged and can be placed close to thermal event.

- They can be calibrated for heating due to radiation but also report convection.
- Broad band absorption calibrated against 3 kW radiant heat source with steel surface.

Radiation Flux Gauges

Our Work

- MTV work based on paper to be published in Propellants, Explosives and Pyrotechnics (Wiley VCH). Work for Wallop Defence Systems.
 - MTV is a flare composition Magnesium/Teflon/ Viton.
- Propellant work for Roxel.
- Ignition composition work for BAE Systems.
- Other work sponsored in-house.

Surface Temperatures of Gauges

Calculating Flux

- Method of S.V. Patankar.
 - Heat flow into ceramic modelled using thermal conductivity, density and heat capacity. Temperature at depth assumed constant but temperature gradient adapted in "slices" as heat flow progresses
 - Calculation only valid for short durations of heat flow (a few seconds).

Sensitivity Parameters

- Sensitivity Depends on:-
 - Absorptivity of surface
 - Thermal Conductivity, Density and Heat capacity of Substrate
- Calculation runs in "Basic" program. In essence
 - dT/dt produces flux (Q)
 - $-\int Q$. dt over duration of flux produces dose
- Flux lines can be erratic, dose usually smooth

Heat Flux

Heat Dose - medium fast composition

Fast Burning Composition

Dose from Burning Composition

Propellant – Three Speeds

College of Management and Technology

Propellant – Doses

Fuel Fire Test

IM Fuel fire test

Effect of 25g Explosive on Fire

Convection

- Not easy to predict.
- Can more than double heat dose.
- Need to Consider:-
 - Reynolds number
 - Prandtl number
 - Expansion number
 - Four variables determined by experiment!
 - See Lawton and Klingenberg, "Transient Temperature Measurement in Engineering"

Flux with Convection

Dose with Convection

Peak Flux – MTV Composition

Heat Transfer from Optically thick Flames and Hot Surfaces

M = $ε_T$. κ. T⁴

M = Rate of Heat transfer (Watts m⁻²)

 $ε_T$ = Temperature dependant emissivity (a number ≤1) κ = Stefan Boltzmann constant = 5.67 x 10⁻⁸ W m⁻² K⁻⁴ T is Emitting Surface Temperature (in Kelvin). Using $ε_T$ = 0.85 and assuming maximum flux fills field of view of gauges

	Maximum M	Surface Temperature	Э
Propellant	0.12 MW m ⁻²	1260 K	
MTV	0.5 MW m ⁻²	1800 K	
Igniter	1.7 MW m ⁻²	2440 K	
College of Management and Technology			

Effect of Distance and View Factor

For Infinitely long coaxial cylinders. $F_{1-2} = 1$

All of the heat emerging from the inner cylinder must pass through the outer one. Concentric Spheres are the same – assumption of point source model.

Effect of distance = $1/d^2$

Point Source Model

Assumes all radiated heat comes from a fixed point.

Assume view factor = 1.

Work back from measured J m⁻² to total Joules using surface area of a sphere at the distance of measurement.

This will give an output in J kg⁻¹ that can be compared with thermochemistry of material to estimate an effective emissivity.

Heat Dose

Effect of Distance – Polythene Pyrotechnic

Distance	Heat Dose	Total Heat
(m)	(J m ⁻²)	MJ kg⁻¹
2.5	8400	1.64
5	1950	1.53
10	430	1.35

Dose = $K/(d^{2.14})$

The fact that the exponent in the distance term is >2 is probably due to atmospheric attenuation as the fireball was stable. College of Management and Technology

Fireballs

- Most fireballs are not well behaved tending to be buoyant. View factor is dynamic as fireball rises.
- Assael and Kakosimos (Fires, Explosions and Toxic Gas Dispersions, CRC Press, 2010) have a formula linking

Height/radius	Effect of distance	
0.5	1/d ^{2.4}	
1.0	1/d ^{1.98}	
5.0	1/d ^{1.19}	
10.0	1/d ^{1.08}	

Rising Fireball Effects?

College of Management and Technology

Effect of Amount and Distance MTV Flare

Effect of Amount on View Factor

Effect of amount on Fireball Duration as Radiant Source

Bigger Fireballs – 6m data

Output and Effective Emisivity

•	Pyrotechnic	1600 kJ/kg	20%
•	Fuel Fire Test	8000 kJ/kg	20%
•	Propellant	1500 kJ/kg	30%
•	MTV Flare	6000 kJ/kg	30%

E-C Koch (Metal Fluorocarbon Based Energetic Materials, Wiley-VCH, 2012) calculated MTV effective emissivity as 23% from measured radiation between 1.8 and 4.8 microns. Koch also measured the surface temperature of the fireball as 1940 K based on 1.6 to 1.7 microns.

Blast Wave Effects

Speed of Perturbation Effect

Distance	Time of	Overall	Speed		
(m)	Arrival	Speed (m s ⁻¹)	between		
			Points (m s ⁻¹⁾		
6	0.0086	698	750		
9	0.0158	570	417		
12	0.0234	513	395		
College of Management and Technology					

Conclusions

- Surface Mounted Thermocouple Heat Flux gauges can be used to calculate radiated heat flux and dose from relatively rapid thermal events.
- They can be used to estimate fireball surface temperatures.
- They can be used to estimate effective emissivity for compositions – which can then be used in hazard calculations.
- They respond to but do not quantify convection.
- All thermocouples respond to fast pressure fluctuations.