A new single-step reaction mechanism for propane explosions covering the entire spectrum of flame acceleration, transition to detonation and detonation

Jennifer Wen¹ & Changjian Wang^{2,3}

¹Warwick Fire, School of Engineering, University of Warwick ² Centre for Fire and Explosion Studies, Kingston University London ³ State Key Laboratory of Fire Safety Science, University of Science and Technology, China

Outline

- The new single-step reaction mechanism
- Governing equations & CFD code
- Validation
	- Comparison with detailed chemistry model
	- Detonation cell size
	- Flame acceleration in a vented duct
- Exploratory study shock and detonation propagation through a U-bend
- Concluding remarks

Limitations of existing reaction mechanisms

(1) Berkeley GRI-mechanism (53 species, 325 reactions) **computationally intensive**

(2) Westbrook's mechanism (1981)
\n
$$
-\frac{d[C_3H_8]}{dt} = 8.6 \times 10^{11} \exp(-15000/T)[C_3H_8]^{0.1}[O_2]^{1.65}
$$

under-predicting half reaction length

(3) Frolov's model (2007)
\n
$$
-\frac{d[C_3H_8]}{dt} = 7 \times 10^{14} \times p^n \times \exp(-454600/RT)[C_3H_8][O_2]
$$

under-predicting half reaction length for rich gas

Our group's previous approach in detonation modelling

Wen, JX , Heidari, A , Ferraris, S and Tam, VHY (2011) Numerical simulation of propane detonation in medium and large scale geometries. *Journal of Loss Prevention in the Process Industries, 24(2), pp. 187-193. ISSN (print) 0950- 4230.*

Reaction progress equation:

$$
\frac{\partial \rho \alpha}{\partial t} = -\nabla(\rho \alpha V) + \rho \omega \tag{4}
$$

$$
\omega = A(1 - \alpha) EXP(-\frac{E_a}{RT})
$$

The predicted overpressure and velocity *vs* **time**

Wen, JX , Heidari, A , Ferraris, S and Tam, VHY (2011) Numerical simulation of propane detonation in medium and large scale geometries. *Journal of Loss Prevention in the Process Industries, 24(2), pp. 187-193. ISSN (print) 0950-4230.*

The new single-step reaction mechanism

A singe-step overall reaction for propane-air combustion

$$
C_3H_8 + 5O_2 + 18.8N_2 \rightarrow 3CO_2 + 4H_2O + 18.8N_2
$$

The reaction rate in Arrhenius form

$$
\omega = k [C_3 H_8]^a [O_2]^b
$$

where $k = Aexp(-\frac{E_a}{RT})$ $\frac{E_a}{RT}$), [C₃H₈], [O₂], . a and b are the rate constant, propane and oxygen molar concentrations, propane and oxygen rate exponents respectively. A and E_a denote pre-exponential factor and activation energy, respectively.

The new single-step reaction mechanism

$$
\omega = k [C_3 H_8]^a [O_2]^b
$$

Reaction order $= a + b$ 3.0 2.8 2.6 2.4 2.2 $n=-\frac{\rho}{\tau_i}\left(\frac{\partial\tau_i}{\partial\rho}\right)_{T_s}+1$ 2.0 Reaction Order 1.8 1.75 1.6 1.4 1.2 $1.0.$ S.P.M Bane, J.L.Ziegler and J.E. Shepherd. "Development of One- 0.8 Step Chemistry Model for flame and ignition simulation". GALCIT 0.6 Report GALTCITFM:2010.002, 2010 0.4 0.2 0.0 0.6 0.8 1.0 1.2 1.8 2.0 2.2 0.4 1.4 1.6 2.4 Equavalence Ratio ¢

K

The new single-step reaction mechanism

$$
-\frac{d[C_3H_8]}{dt} = 3.11 \times 10^{14} \exp\left(\frac{-55910}{RT}\right) [C_3H_8]^{0.1} [O_2]^{1.65}
$$

 $\Box K$ WARW

Governing equations

$$
\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u}_j}{\partial x_j} = 0
$$
\n
$$
\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij} \right]
$$
\n
$$
\frac{\partial \rho h_s}{\partial t} + \frac{\partial \rho u_j h_s}{\partial x_j} = \frac{dp}{dt} + \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial h_s}{\partial x_j} \right) + Q
$$
\n
$$
\frac{\partial \rho Y_k}{\partial t} + \frac{\partial \rho u_j Y_k}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial Y_k}{\partial x_j} \right) + \omega_k
$$

Numerical setup

Time: second-order Crank-Nicholson scheme

The convective terms: 2rd MUSCL scheme (TVD)

The viscous terms: second-order central differencing discretization

Validation – detonation cell size

Experimental cell width: 55mm Predicted value: 60mm

Westbrook's model (cell size: ~20mm)

Validation - Flame acceleration in a vented

WARWICK

duct (*P. H. Taylor and S. J. Bimson, "Flame propagation along a vented duct containing grids .," 22nd International Symposium on Combustion, August 1988, pp. 1355–1362, 1989.)*

Exploratory study - shock and detonation propagation through a U-bend

S. M. Frolov, V. S. Aksenov, and I. O. Shamshin, "Shock wave and detonation propagation through U-bend tubes," Proceedings of the Combustion Institute, vol. 31, no. 2, pp. 2421–2428, Jan. 2007.

Numerical setup

- The geometry and set up mimics that of Frolov et al.'s experiments.
- The grid size is 0.25mm (8 grids in half reaction length) total grid number is 2.15M (10562×204)
- Six cases as listed below

Results

The effects of the U-Bend:

- (1) First decelerating and then accelerating (Cases1 and 2)
- (2) First accelerating and then decelerating (Case 3)
- (3) Continuously decelerating (Case 4)
- (4) Decelerating shock wave followed separately by a flame (Cases 5 and 6)

Case-1: First decelerating and then accelerating

Case 1: First decelerating and then accelerating

Case 2: First decelerating and then accelerating

Case 3: First accelerating and then decelerating

Case 4: Decelerating

Case 5: Decelerating shock wave followed separately by a flame

Case 6: Decelerating shock wave followed separately by a flame

Conclusions

- A new single-step reaction mechanism has been developed for propane-air mixture, covering the entire spectrum covering flame acceleration, transition to detonation and detonation.
- For the vented duct case, the predicted flame front is in good agreement with the measurements.
- For the six cases in the U-tube, the effects of the bend depend on the initial pressure. For the pressure range considered from 60 to 140 bar, four modes are predicted:
	- \triangleright First decelerating and then accelerating
	- \triangleright First accelerating and then decelerating
	- \triangleright Continuously decelerating
	- \triangleright Decelerating shock wave followed separately by a flame

Acknowledgement

We are thankful to the financial support of the European Commission's Marie Curie Programme IIF-FP7 Project (Grant No. 909658).

Many thanks to Geoff Chamberlain for pointing us to the vented duct flame data.

