

RANS modelling of confined, vented explosions of methane-hydrogen mixtures for the NATURALHY project

R.M. Woolley¹, M. Fairweather¹, S.A.E.G. Falle² and J.R. Giddings³

1 *Institute of Particle Science and Engineering, School of Process, Environmental, and Materials Engineering, University of Leeds, Leeds LS2 9JT, UK.*

²*Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK.*

3Mantis Numerics Ltd., 1 Oakwood Nook, Leeds LS8 2JA, UK

- **Overview**
- **o**Introduction.
- Experimental Configuration.
- Mathematical Model and Numerical Solution.
- **A**Results.
- **o**Conclusions.

UNIVERSITY OF LEEDS

Introduction

- Increasing interest in use of hydrogen as an energy carrier.
- Work undertaken as part of the NATURALHY project.
- Hydrogen transported in gas network as mixture.
- Essential to investigate the behaviour of such gaseous releases.
- Work concerns confined, venting explosions of 0%, 20%, and 50% H_2 v/v and $CH₄$ mixtures with and without congestion.

Experimental Configuration

Experimental Configuration

- Flow fields resolved by solution of time-dependent, densityweighted, partial differential equation conserving mass, momentum, total energy, and a reaction progress variable.
- Godunov's method applied to convective and pressure fluxes. Central differencing used to approximate diffusion and source terms.
- Adaptive grid algorithm enables finer grids to be applied in regions of high spatial and temporal variation.
- Equation set closed with standard k-ε model and Jones and Musonge second-moment model.

• Premixed combustion represented by conservation of a reaction progress variable, with a source term prescribed using a modified form of an eddy break-up reaction-rate expression.

$$
\overline{\rho S(c)} = \overline{\rho R_c}
$$
\n
$$
\overline{\rho S(c)} = \overline{\rho R_c}
$$
\n
$$
\overline{\rho R_c} = \overline{\rho} R \tilde{c}^4 (1 - \tilde{c}) \left(\frac{\rho_u}{\rho_b}\right)^2
$$
\n
$$
q = \left(\frac{p_o}{\rho_u}\right) \left(\frac{\rho_u}{\rho_b} - 1\right) \frac{\gamma}{(\gamma - 1)}
$$

Form of reaction rate expression eliminates the cold-front quenching problem.

• Knowledge of turbulent burning velocity and turbulent flame thickness and using the analysis of Catlin and Lindstedt, reaction rate and turbulent diffusion coefficient can be prescribed as: $u_t \delta_t$ *u* Λ

$$
\Gamma = \frac{u_t o_t}{\Lambda_1 \Lambda_2} \qquad R = \frac{u_t \Lambda_2}{\delta_t \Lambda_1}
$$

- **Flame thickness is approximated as a turbulent length** scale. Turbulent burning velocity prescribed using latest experimental data from University of Leeds.
- Approach ensures that solutions give rise to a flame which reproduces specified burning velocities.

Burning Velocities

- Geometry modelled using three approaches.
	- 2-d symmetry approach

• Grid adaption at obstacles and flame front

50%H2 2D Reynolds-stress 17 Obstacles

• 3-d

H₂ in gas mixture / mol%

Results

Pressure traces of observed peaks for 17 obstacle geometry with 20% and 50% hydrogen concentrations (symbols – experiment, solid line – Reynolds stress, dashed line $-$ k- ε) calculated using the 3-D approach for the rear ignited cases.

Results

Maximum overpressures observed for 0 and 17 obstacle geometries and 0%, 20% and 50% hydrogen concentrations (symbols – experiment; o 21-objects, \Box 0-objects; solid line – Reynolds stress; dashed line – $k-\epsilon$) calculated using the symmetry approach (left) and 2-D approach (right) for the centrally ignited case.

Results

Maximum overpressure versus $H₂$ content of mixture for 17 obstacle rearignited case (symbols – data, solid line – Reynolds stress).

Conclusions

- Reynolds-stress turbulence model applied to prediction of large-scale vented explosions, coupled to turbulent premixed combustion model, for first time.
- Reynolds-stress model is generally at variance with isotropic approach, although differences in predicted overpressures and flame-front velocities often small.
- Combustion model, incorporated with the most recently available experimental data, can predict to a high degree of accuracy.
- \bullet 45% level of H₂ concentration could be a barrier in the consideration of mixture usage.
- 2-dimensional calculations viable for future studies.

Future work

- Code is now parallel. Further 3-dimensional work can be undertaken to validate the models.
- Consideration of laminar to turbulent transition. \bullet
- Moving towards LES with greater processor availability. e.

Acknowledgements

The Authors gratefully acknowledge financial support for the work described from the EC's 6th Framework Programme (Integrated Project NATURALHY – SES6/CT/ 2004/50266)

Experimental work was undertaken by GLND and Loughborough University as part of the NATURALHY project.