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Introduction 

Increasing interest in use of hydrogen as 

an energy carrier. 

Work undertaken as part of the 

NATURALHY project. 

Hydrogen transported in gas network as 

mixture. 

Essential to investigate the behaviour of 

such gaseous releases. 

Work concerns confined, venting 

explosions of 0%, 20%, and 50% H2 v/v 

and CH4 mixtures with and without 

congestion. 
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Experimental Configuration 
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Experimental Configuration 
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Test Number Fuel / CH4:H2 
Congestion / 

pipes 
Ignition 
location 

1 100:0 None Centre 

2 80:20 None Centre 

3 50:50 None Centre 

4 80:20 17 Centre 

5 50:50 17 Centre 

6 100:0 None Rear 

7 80:20 None Rear 

8 50:50 None Rear 

9 80:20 17 Rear 

10 50:50 17 Rear 



Mathematical Model and Numerical Solution 

Flow fields resolved by solution of time-dependent, density-

weighted, partial differential equation conserving mass, 

momentum, total energy, and a reaction progress variable. 

Godunov’s method applied to convective and pressure 

fluxes. Central differencing used to approximate diffusion 

and source terms. 

Adaptive grid algorithm enables finer grids to be applied in 

regions of high spatial and temporal variation. 

Equation set closed with standard k-ε model and Jones and 

Musonge second-moment model. 

Institute of Particle Science and Engineering 
SCHOOL OF PROCESS, ENVIRONMENTAL, AND MATERIALS 

ENGINEERING 



Mathematical Model and Numerical Solution 

Premixed combustion represented by conservation of a 

reaction progress variable, with a source term prescribed 

using a modified form of an eddy break-up reaction-rate 

expression. 

 

 

 

Form of reaction rate expression eliminates the cold-front 

quenching problem. 

 

Institute of Particle Science and Engineering 
SCHOOL OF PROCESS, ENVIRONMENTAL, AND MATERIALS 

ENGINEERING 

   cS c R     cS E R q 

 

 
2

4 1 u
c

b

R Rc c


 


 
   

 

 

 
1

1

o u

u b

p
q

 

  

  
   

  



Mathematical Model and Numerical Solution 

Knowledge of turbulent burning velocity and turbulent flame 

thickness and using the analysis of Catlin and Lindstedt, 

reaction rate and turbulent diffusion coefficient can be 

prescribed as: 

 

Flame thickness is approximated as a turbulent length 

scale. Turbulent burning velocity prescribed using latest 

experimental data from University of Leeds. 

Approach ensures that solutions give rise to a flame which 

reproduces specified burning velocities. 
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Burning Velocities 
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Mathematical Model and Numerical Solution 

• Geometry modelled using three approaches. 

• 2-d symmetry approach 
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Mathematical Model and Numerical Solution 

• Grid adaption at obstacles and flame front 
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Mathematical Model and Numerical Solution 
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Mathematical Model and Numerical Solution 

• 2-d 
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Mathematical Model and Numerical Solution 

• 3-d 

 

Institute of Particle Science and Engineering 
SCHOOL OF PROCESS, ENVIRONMENTAL, AND MATERIALS 

ENGINEERING 



Results 
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Results 
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Pressure traces of observed peaks for 17 obstacle geometry with 20% 

and 50% hydrogen concentrations (symbols – experiment, solid line – 

Reynolds stress, dashed line – k-) calculated using the 3-D approach for 

the rear ignited cases. 



Results 
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Maximum overpressures observed for 0 and 17 obstacle geometries and 0%, 

20% and 50% hydrogen concentrations (symbols – experiment; o 21-objects, □ 

0-objects; solid line – Reynolds stress; dashed line – k-) calculated using the 

symmetry approach (left) and 2-D approach (right) for the centrally ignited case. 



Results 

 

 

 

 

Institute of Particle Science and Engineering 
SCHOOL OF PROCESS, ENVIRONMENTAL, AND MATERIALS 

ENGINEERING 

Maximum overpressure versus H2 content of mixture for 17 obstacle rear-

ignited case (symbols – data, solid line – Reynolds stress). 

 



Conclusions 

Reynolds-stress turbulence model applied to prediction of large-scale 

vented explosions, coupled to turbulent premixed combustion model, 

for first time. 

Reynolds-stress model is generally at variance with isotropic approach, 

although differences in predicted overpressures and flame-front 

velocities often small. 

Combustion model, incorporated with the most recently available 

experimental data, can predict to a high degree of accuracy. 

45% level of H2 concentration could be a barrier in the consideration of 

mixture usage. 

2-dimensional calculations viable for future studies. 
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Future work 

Code is now parallel. Further 3-dimensional work can be undertaken to 

validate the models. 

 

Consideration of laminar to turbulent transition. 

 

Moving towards LES with greater processor availability. 
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