

Validation of Phast dispersion model for USA LNG siting applications

UKELG Discussion Meeting, IGEM House, Kegworth. October 2012

Henk Witlox and Mike Harper – DNV Software, Robin Pitblado – DNV Houston

UDM validation against PHMSA LNG experimental database

- I. Introduction and previous UDM model validation
- 2. UDM validation against PHMSA experiments
 - Experiments
 - Model input
 - Model results and validation statistics
 - Conclusions

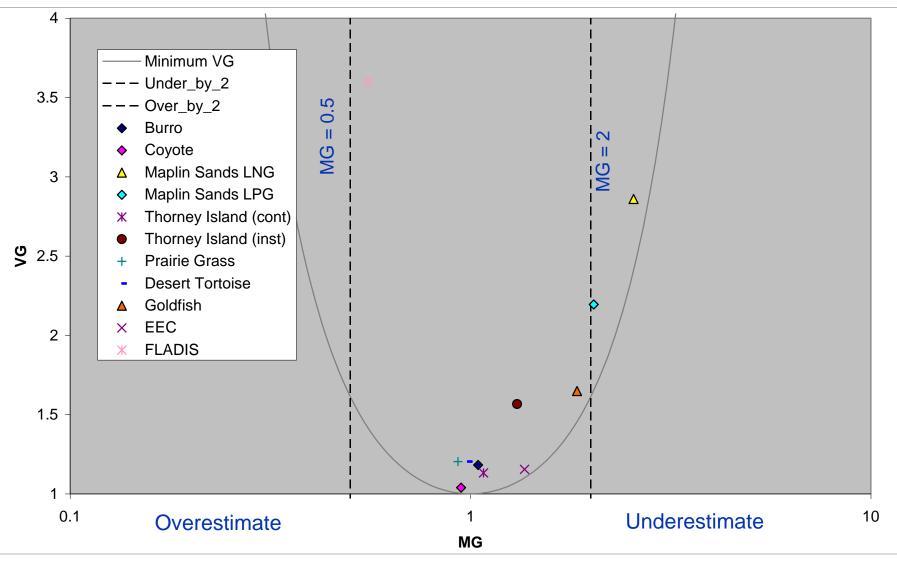
1. Introduction and Previous Validation

PHMSA and exclusion zone modelling

- Pipeline and Hazardous Materials Safety Administration (PHMSA) sets standards for siting LNG facilities in the US
- Exclusion Zones
 - Areas potentially exposed to flammable clouds or unsafe thermal radiation levels
 - Calculated using approved models
 - DEGADIS
 - FEM3A
 - Potential for other models to be approved
- Late 2010 process put in place by which approval could be obtained
 - Likely increase in number of LNG facilities
 - Uncertainties in understanding LNG dispersion
 - Validation against large-scale experiments a key component
 - Formal submission to PHMSA
- Purely relates to UDM (Dispersion) modelling within Phast

Previous UDM evaluation/validation

- Hanna (early nineties)
 - MDA experimental database
 - Independent Model validation by external consultant
- EU Project SMEDIS: 'Scientific Model Evaluation DISpersion Models' (late nineties)
 - REDIPHEM experimental database focus on two-phase pressurised releases
 - Model Evaluation Protocol (MEP)
 - Model validation by model developers (Phast UDM by DNV Software)
 - Independent Model Evaluation Report (MER) by external consultant (UDM by Rex Britter)
 - Accompanied by rigorous UDM quality improvement with detailed verification and validation
- More recent
 - Droplet Modelling JIP (From 2001)
 - Pool vaporisation (UCL sponsored Ph.D.)


Dispersion – Validation against large scale experiments

- Continuous passive dispersion
 - SO₂ (Prairie Grass [SMEDIS/MDA])
- Continuous elevated two-phase jet
 - Ammonia (Desert Tortoise [SMEDIS/MDA] and FLADIS [SMEDIS])
 - Propane (EEC [SMEDIS])
 - HF (Goldfish)
 - CO₂ (SpadeAdam BP and Shell)
- Continuous dispersion from pool
 - LNG (Maplin Sands, Burro, Coyote [PHMSA/MDA])
 - LPG (Maplin Sands [MDA])
- Continuous and finite-duration dispersion from area source
 - CO_2 (Kit Fox)
- Continuous low-momentum horizontal release
 - Freon/Nitrogen (Thorney Island [РНМSA])
- Instantaneous un-pressurised
 - Freon/Nitrogen (Thorney Island [MDA])

Validation of Phast dispersion model for USA LNG siting applications

Phast v6.7 validation – concentration

2. PHMSA UDM validation

PHMSA Requirements and Submission

- 'Model evaluation protocol' (MEP)
 - HSL (lvings et al., 2007)
 - Based on SMEDIS
- 'Model evaluation report' (MER)
 - DNV Energy (Robin Pitblado)
 - Update of Rex Britter SMEDIS report
- Performance against validation database
 - HSL (Coldrick et al., 2010)
 - Excel spreadsheet & report
- Supplementary
 - Technical reference
 - Phast PSU file

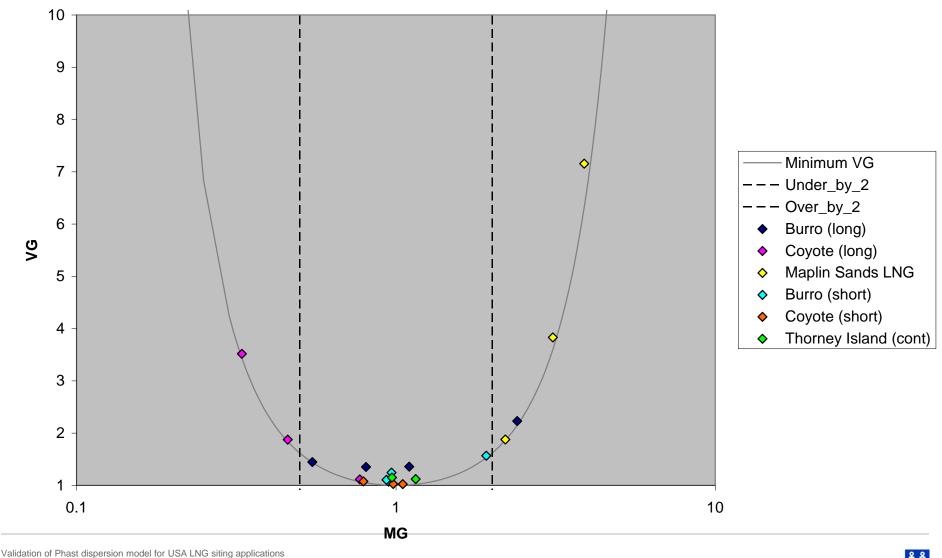
Validation of Phast dispersion model for USA LNG siting applications

PHMSA UDM validation - experiments and modelling

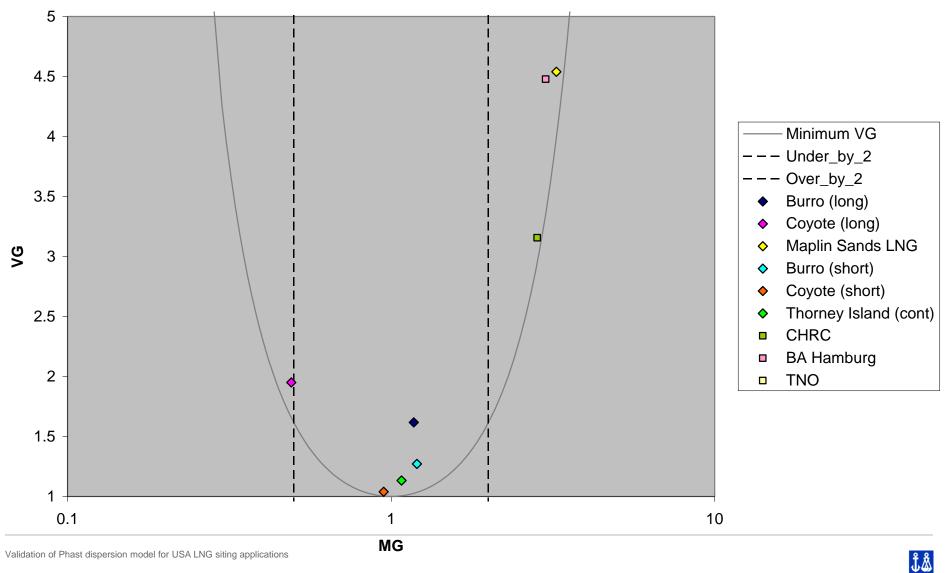
- Selection of experiments
 - PHMSA database includes only unpressurised releases UDM validated against much wider dataset including two-phase pressurised releases
 - Experiments without obstructions selected only
- Wind-tunnel experiments modelled at full-scale

(UDM default assumptions are based on typical outdoor ambient turbulence)

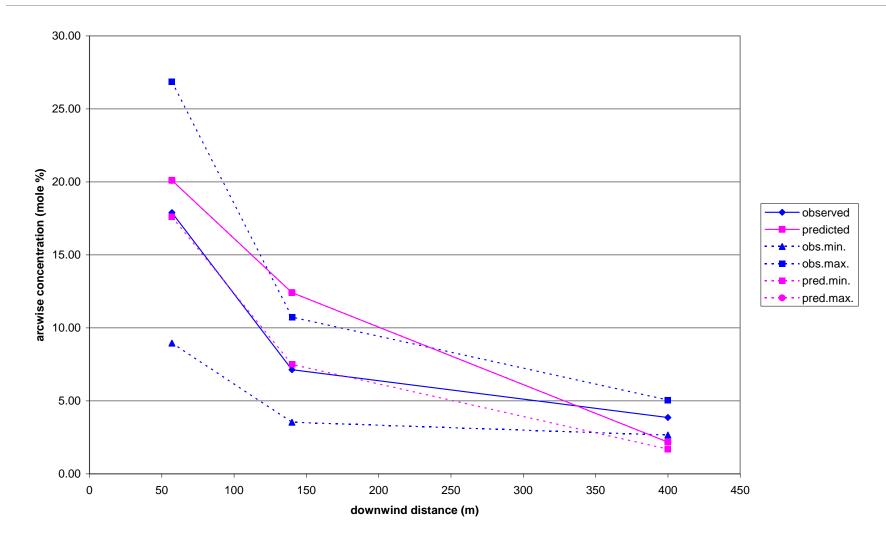
- Modelling assumptions
 - Phast used 'out of the box' with all v6.7 default parameters
 - Exception: core averaging time = required averaging time recommended for best results
 - Field experiments: user-defined 'leak' scenario
 - Wind tunnel: user-defined 'pool source' scenario
- Requested UDM concentration results
 - Maximum concentration and cloud width (across arc)
 - Point-wise concentration at given downwind distance x, crosswind distance y, height z
 - UDM predicts centre-line temperature and therefore no values given for off-centre line temperatures (as for SMEDIS)


Validation of Phast dispersion model for USA LNG siting applications

PHMSA UDM Validation


Experiment	Trial Number	Field (F) or Windtunnel (WT)	Material	Modelled by UDM as
Maplin Sands	27 34 35	F	LNG	Low momentum elevated horizontal release
Burro	3 7 8 9	F	LNG	Low momentum elevated horizontal release
Coyote	3 5 6	F	LNG	Low momentum elevated horizontal release
Thorney Island	45 47	F	Freon&N ₂	Low momentum ground-level horizontal release
CHRC	А	WT	CO2	Ground-level vapour pool source
BA-Hamburg	DA0120 DAT223	WT	SF ₆	Ground-level vapour pool source
BA-TNO	TUV01 FLS	WT	SF ₆	Ground-level vapour pool source

Summary results table for all field experiments


Summary results figures for all groups of experiments

MANAGING RISK

Sensitivity/uncertainty analysis – measured versus observed concentrations

(Burro 7 – short averaging times)

Validation results – discussion and conclusions

- Field experiments
 - Short averaging times:
 - Burro and Coyote (excellent)
 - Maplin Sands under-prediction, consistent with other models assessed?
 - Time-averaging can lead to under-prediction of highly dynamic pools
 - Long averaging times
 - Thorney Island (excellent)
 - Burro (good)
 - Coyote (slight over-prediction)
 - Difficulty with selecting correct dispersion 'segment' to match time-averaging window
- Wind-tunnel experiments
 - Consistent under-prediction of concentrations
 - Possibly caused by scaling?
- Current and future work
 - Improved pool modelling (including multi-component logic)
 - Improved short duration and time varying modelling (including from pools)

Approval

- Phast formally approved October 2011
 - Applies to Phast 6.6 (UDM version 2) and 6.7
- Appropriate for modelling LNG dispersion from
 - Circular or low aspect ratio pools
 - Any release direction
- May not be appropriate for
 - Trenches or high aspect ratio pools
 - Multiple coincident releases
 - Varying terrain
 - Between large obstructions that cause wind channelling

Safeguarding life, property and the environment

www.dnv.com

