2-D Physical Model for the Buncefield Gas Cloud Formation A Progress Report

Jerry Havens University of Arkansas UKELG Workshop Kegworth, UK, 10-18-2012

Assumed 2D Flow Area – Concentration Decreasing Right to Left

- Model as steady-feed 2-D Gas Gravity Current (zero wind)
- Primary goal: measure gas concentration in the flow field
- Secondary goal: model a 2-D section of the Buncefield gas flow

Purpose

- Determine the magnitude and uniqueness (constancy) of the Froude number for a steady-feed 2-dimensional gas gravity current Reported N_{Fr} range ~ 1.0 to $2^{1/2}$
- Determine the Reynolds number required for N_{Re} independence and verify independence with concentration measurements.
- Measure the resulting non-dimensional concentration distribution in the "indicated" section of the Buncefield flow.

Experimental Design

Reynolds Number

Froude Number

v = kinematic viscosity, m²/s g['] = g(($\rho - \rho_{air}$)/ ρ_{air}), m/s²

Experimental Design

Video Recording

- Synchronized digital video capture of about 45 cm wide side-on views of flow (visualized with smoke) at 5 stations, starting from release edge
- Use timed video to measure gravity current height and velocity as function of down-current position and time
- Test Fr = 1 (and constancy) assumption
- Use video to determine rough measurements of entrainment from cloud height measurements as function of distance traveled – these measurements used to assist estimation of approach to N_{Re} independence

Experimental Design

Source box Cover for filling (removable) Slaved Video Cameras

"C0₂" Timing Camera #2 Frames

Showing Head Development

Gas Concentration Measurements

- Measure gas concentrations with FID at specific heights and down-channel locations for different flow rates (different N_{Re})
- Compare concentrations at identical dimensionless times and locations, emphasizing "steady" part of the flow
- If flows are N_{Re} independent, the concentrations at identical scaled values should approach equality

Initial Trials Measurements

- Density = 1.77 kg/m^3 "CO₂" (g² = 4.87 m/s^2)
- Density = 1.35 kg/m^3 "Buncefield" (g² = 1.40 m/s^2)

"C0₂"

Initial Trials Measurements Reynolds Number "1500" Gas Density = 1.77 kg/m³

Height of Gas Layer Moving from Box = 5.2 cm

Height of 5.2 cm indicates Velocity of Current = 25.4 cm/s

Reynolds Number "1500" "CO₂" - 1.77 kg/m³

Reduced Gravity m/s ²	(upward) Floor Velocity cm/s	Calculated Horizontal Velocity (quasi steady) cm/s	Measured Cloud Height (initial) cm
4.87	1.31	25.4	5.2

"Measured" Reynolds Number = 1605

Reynolds Number "1500" – "CO₂" 1.77 g/m³

Reynolds Number "1500" - " CO_2 " Concentration vs. Time – 5 ft down channel

Reynolds Number "1500" - "CO₂" Concentration vs. Distance

Front Structure

"Buncefield" Initial Trials Measurements Reynolds Number "1000" Gas Density = 1.35 kg/m³

Height of Gas Layer Moving from Box = 8.4 cm

Height of 8.4 cm indicates Velocity of Current = 15.3 cm/s

Reynolds Number "1000" "Buncefield" – 1.35 kg/m³

Reduced Gravity m/s ²	(upward) Floor Velocity cm/s	Calculated Horizontal Velocity (quasi steady) cm/s	Measured Cloud Height (initial) cm
1.40	1.28	15.3	8.4

"Measured" Reynolds Number = 1020

Reynolds Number "1000" -- Buncefield 1.35 g/m³

Reynolds Number "1000" - "Buncefield" Concentration vs. Time – 3 ft down channel

Reynolds Number "1000" - "Buncefield" Concentration vs. Distance

Current Status Immediate Plans

- Demonstrated experiment repeatability, including near-exact transient concentration repeatability
- Demonstrated consistent measurement of gravity current velocity by video records and FID gas concentration measurements
- Identified importance of transient phase of gravity current in these experiments
- Automate experiment plan/procedure
- Investigate vertical concentration distribution
- Investigate Reynolds Number Similarity
- Investigate scaling considerations for Buncefield

