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Overview

NTKINS

e Introduction

e Dense gas dispersion — why is this unusual?

o What does “validation” mean ...

o How well does CFD model dense gas dispersion?
e Conclusions ... ending with a question
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Introduction — context for this talk

Growth in LNG Demand

e Liquefied Natural Gas (LNG) is a mothers
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Introduction — context for this talk

e Assessmentis required of these plant to gauge hazards to:
— personnel working on the plant
— public beyond the plant perimeter
— the plant itself
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o Wide range of consequence modelling is undertaken:
— typically with integral or “box models”

— ... but increasingly with CFD.
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Introduction — context for this talk
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e In an LNG plant, there are large inventories of cold and heavy gases
e So many of the accidental releases are dense vapours:

Molecular Specific
Material Temperature weight gravity (cf.
(kg/kmol) ambient air)
LNG ~-162°C 18.5 1.7
LPG ~ -42°C to -1°C 44 — 58 2—-2.2

Refrigerant e.g. -50°C e.g. 30 1.4
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Dense gases — why so special? ‘é’
N
o Density gradients in a flow can have significant impact on IE
the turbulence in the flow:
Unstable Stable
E > E 1“)3
density

density
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Stable stratification — energy sink term 2
>

e Energy budget (with boundary layer approximation): 'Z
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Stable stratification — energy sink term

e Energy budget (with boundary layer approximation):
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e Anisotropy increases with stability : & -uv/k (-~ C )
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Research in dense gas dispersion

e Is prodigious and long-established!

e For example (to name just a few):
— Britter (1974), McQuaid (1976)
— Maplin Sands and Burro full-scale trials (1980)
— Wheatley & Webber review (1985)
— Britter McQuaid workbook, HSE (1988)
— KoOnig-Langlo & Schatzmann wind tunnel tests (1990)
— Cleaver review paper (2007)
— lvings et al (2007) HSE report
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What does “validation” mean??
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e Press article from one of the Commercial CFD
code vendors:

— Code X has been “validated” against 33 dense gas
experiments

— Scenarios that can be modelled using X include ...
dispersion from LNG spills

e This code is based on a simple linear-EVM
k-epsilon turbulence closure model.

e Validated?
o Really?
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Simple test case
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e Ljuboja and Rodi (1980)

— 2D jet spreading along a wall — lab tests
— |Isothermal (constant density) case:

e sSimilarity arguments — can prove: b ~ X
— Increasing stability:

e reduced turbulence levels

e reduced entrainment
e reduced spreading rate
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Can CFD reproduce this? 2
e Start with isothermal case f_‘
— actually fairly challenging <
— presence of wall damps vertical turbulence
— linear growth well captured, though
— results broadly acceptable
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Can CFD reproduce this?

o How about stably stratified cases?

e All available closure models in commercial CFD codes:
unabashed linear jet growth.

e Significant under-prediction of hazards from this scenario.
e None can reproduce the “stabilising” effect of the stratification.
° Why’?
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Why i1s CFD struggling here?
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e Standard turbulence closure models are missing the
key physics

o ... the stabilising effect of the dense gas.
e Closure model needs to:
— Allow for anisotropy

— Reduce vertical diffusivity
— Dampen turbulence production rate

e These features are not present in standard isotropic gradient
diffusion eddy viscosity models.
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Why i1s CFD struggling here?

e Solutions:

— Algebraic stress model is a cheap way forward:

 eddy viscosity model with constants (C,, o, etc) that change with stability —

e.g. Ljuboja & Rodi (1980)
— Full Reynolds stress model (6 stresses + 3 scalar fluxes)

e Also, but impractical:

— LES (but not DES ... unless based on above ASM)
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Conclusions
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e Standard CFD closure models cannot reproduce the
stabilising effect of density gradients.

e These will provide non-conservative predictions of gas
concentration in the mid to far-field.

e For correct prediction:
— an advanced closure model must be used,
— that accounts for turbulence anisotropy
— and the dampening effect of stability.
e None of the commercial codes currently provide this.

e Despite this, some codes are “validated” for these flows —
what does this mean?
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