ATKINS

Dense gas dispersion for LNG plant

... some recent findings

Ian Cowan

Chief Engineer, Head of Fluid Mechanics, Atkins Energy

18th October 2012

Plan Design Enable

Overview

MTKINS

- Introduction
- Dense gas dispersion why is this unusual?
- What does "validation" mean ...
- How well does CFD model dense gas dispersion?
- Conclusions ... ending with a question

Introduction – context for this talk

- Liquefied Natural Gas (LNG) is a booming market now.
- Large numbers of LNG plant are in design & construction around the world.

- UKELG, 18/10/12, slide 3

Introduction – context for this talk

- Assessment is required of these plant to gauge hazards to:
 - personnel working on the plant
 - public beyond the plant perimeter
 - the plant itself
- Wide range of consequence modelling is undertaken:
 - typically with integral or "box models"
 - ... but increasingly with CFD.

Cowan – UKELG, 18/10/12, slide 4

Introduction – context for this talk

- **NTKINS**
- In an LNG plant, there are large inventories of cold and heavy gases
- So many of the accidental releases are dense vapours:

Material	Temperature	Molecular weight (kg/kmol)	Specific gravity (cf. ambient air)
LNG	~ -162ºC	18.5	1.7
LPG	~ -42°C to -1°C	44 – 58	2 – 2.2
Refrigerant	e.g50°C	e.g. 30	1.4

Dense gases – why so special?

• Density gradients in a flow can have significant impact on the turbulence in the flow:

NTKINS

Cowan – UKELG, 18/10/12, slide 6

Cowan & Britter (1994)

Stable stratification – energy sink term

• Energy budget (with boundary layer approximation):

 $\mathcal{B} = q\overline{\rho v}/\rho_0$ is the buoyancy consumption term $\frac{1}{2}\overline{q^2} = \frac{1}{2}\overline{u_i^2}$ is the turbulent kinetic energy

> Cowan - UKELG. 18/10/12. slide 7

Stable stratification – energy sink term

• Energy budget (with boundary layer approximation):

TKE
$$\frac{\partial_{\frac{1}{2}}\overline{q^{2}}}{\partial t}$$
= \mathcal{P} \mathcal{B} \mathcal{E} \mathcal{A} $\frac{\partial}{\partial y} \left(\frac{1}{2} \overline{q^{2} v} + \frac{\overline{pv}}{\rho_{0}} \right)$ Horizontal
Re stress $\frac{\partial_{\frac{1}{2}}\overline{u^{2}}}{\partial t}$ = \mathcal{P} $+$ Ψ_{11} \mathcal{E}_{11} \mathcal{A}_{1} $\frac{\partial_{\frac{1}{2}}\overline{u^{2} v}}{\partial y}$ Vertical
Re stress $\frac{\partial_{\frac{1}{2}}\overline{v^{2}}}{\partial t}$ = $-\mathcal{B}$ $+$ Ψ_{22} \mathcal{E}_{22} \mathcal{A}_{2} $\frac{\partial}{\partial y} \left(\frac{\overline{v^{3}}}{2} + \frac{\overline{pv}}{\rho_{0}} \right)$

$$\mathcal{P} = -\overline{uv}\partial\overline{U}/\partial y$$
 is the production term
 $\mathcal{B} = g\overline{\rho v}/\rho_0$ is the buoyancy consumption term
 $\frac{1}{2}\overline{q^2} = \frac{1}{2}\overline{u_i^2}$ is the turbulent kinetic energy

• Anisotropy increases with stability : $\sqrt[n]{-uv} / k (\sim C_{\mu}^{\frac{1}{2}})$

Research in dense gas dispersion

- Is prodigious and long-established!
- For example (to name just a few):
 - Britter (1974), McQuaid (1976)
 - Maplin Sands and Burro full-scale trials (1980)
 - Wheatley & Webber review (1985)
 - Britter McQuaid workbook, HSE (1988)
 - König-Langlo & Schatzmann wind tunnel tests (1990)
 - Cleaver review paper (2007)
 - Ivings et al (2007) HSE report

What does "validation" mean?

- Press article from one of the Commercial CFD code vendors:
 - Code X has been "validated" against 33 dense gas experiments
 - Scenarios that can be modelled using X include ... dispersion from LNG spills
- This code is based on a simple linear-EVM k-epsilon turbulence closure model.
- Validated?
- Really?

Cowan – UKELG, 18/10/12, slide 10

Simple test case

- Ljuboja and Rodi (1980)
 - 2D jet spreading along a wall lab tests
 - Isothermal (constant density) case:
 - similarity arguments can prove: b ~ X
 - Increasing stability:
 - reduced turbulence levels
 - reduced entrainment
 - reduced spreading rate

Can CFD reproduce this?

- Start with isothermal case
 - actually fairly challenging
 - presence of wall damps vertical turbulence
 - linear growth well captured, though
 - results broadly acceptable

Closure scheme	Spread rate cf. expts	
Std k-ε	+22%	
Non-lin. k-ε	+15%	
RSM	+15%	
V2F	+3%	
k-ω SST	-5%	

Can CFD reproduce this?

- How about stably stratified cases?
- All available closure models in commercial CFD codes: unabashed linear jet growth.
- Significant under-prediction of hazards from this scenario.
- None can reproduce the "stabilising" effect of the stratification.

Cowan – UKELG, 18/10/12. slide 13

Why is CFD struggling here?

- Standard turbulence closure models are missing the key physics
- ... the stabilising effect of the dense gas.
- Closure model needs to:
 - Allow for anisotropy
 - Reduce vertical diffusivity
 - Dampen turbulence production rate
- These features are not present in standard isotropic gradient diffusion eddy viscosity models.

Why is CFD struggling here?

- Solutions:
 - Algebraic stress model is a cheap way forward:
 - eddy viscosity model with constants (C_μ, σ_t etc) that change with stability e.g. Ljuboja & Rodi (1980)
 - Full Reynolds stress model (6 stresses + 3 scalar fluxes)
- Also, but impractical:
 - LES (but not DES ... unless based on above ASM)

Cowan – UKELG, 18/10/12, slide 15

Conclusions

- Standard CFD closure models cannot reproduce the stabilising effect of density gradients.
- These will provide non-conservative predictions of gas concentration in the mid to far-field.
- For correct prediction:
 - an advanced closure model must be used,
 - that accounts for turbulence anisotropy
 - and the dampening effect of stability.
- None of the commercial codes currently provide this.
- Despite this, some codes are "validated" for these flows what does this mean?