

Added value and limitations of CFD codes within the framework of industrial safety: the specific case of atmospheric dispersion B. Truchot^{*}, J.M. Lacome and C. Proust

* : benjamin.truchot@ineris.fr +33 (3) 44 61 81 50

maîtriser le risque pour un développement durable

Industrial risks mastering in France

2001, September the 21st: Major explosion in Toulouse (AZF)

- 31 deaths
- 2500 injuries

Consequences: Modification of the industrial risk prevention strategy

2005: A new legal tool in France for protection people from industrial hazards

- PPRT ("Plan de Prévention des Risques Technologiques")
- Requirement: Prediction of dangerous area in case of accident
- Consequences: financial and human impact: protection measures to expropriation
- Importance in computing precise distance to prevent people from exposure AND realistic safety cost

Dangerous phenomena and current approach

3 types of phenomena

- Fire
 - Radiation models
 - Integral and Gaussian approaches for smoke dispersion
- Toxic dispersion
 - Integral and Gaussian approaches
- Explosion
 - Integral and Gaussian approaches for vapour dispersion
 - Analytical models enriched with experimental data
- ➔ A financial interest for explosion (glassbreak) and dispersion (large distance)
- ➔ Atmospheric dispersion appears as a key issue for effect prediction

Limits of current modelling approaches

Current approaches : Integral and Gaussian models

- + Design on experimental campaigns with free releases
- + Directly linked with atmospheric stability
- Not able to take obstacles into account
- Not able to predict kinetic aspects

A real requirement

→ being more predictive in terms of distance for the different effects

Are other possibilities available?

Is CFD an improvement?

Theoretically

CFD modelling \Leftrightarrow Fluid mechanics equation solving

→ All physical phenomena must be taken into account

But, a significant dependance on

- Suitable boundary conditions in relation with wind stability
- CFD sub models to reproduce physical phenomena (thermal gradient effect, turbulence equilibrium, ...)

<u>A finding</u>: Different chosen approaches by user induce large variety in the computed distances

The French National Working Group

The objective

 To propose best practices in order to homogenise practises regarding atmospheric dispersion modelling with CFD

Three subgroups with specific thematic:

- Scientist WG: Physical models, visualisation and results interpretation, ...
- Modelling WG: Simulations of blind fictitious cases, comparison with experimental results, parametric tests based on a dozen of users...
- Diffusion and communication WG: Application fields, results presentation and communication, ...

Construction of best practices based on the computation of 2 blind

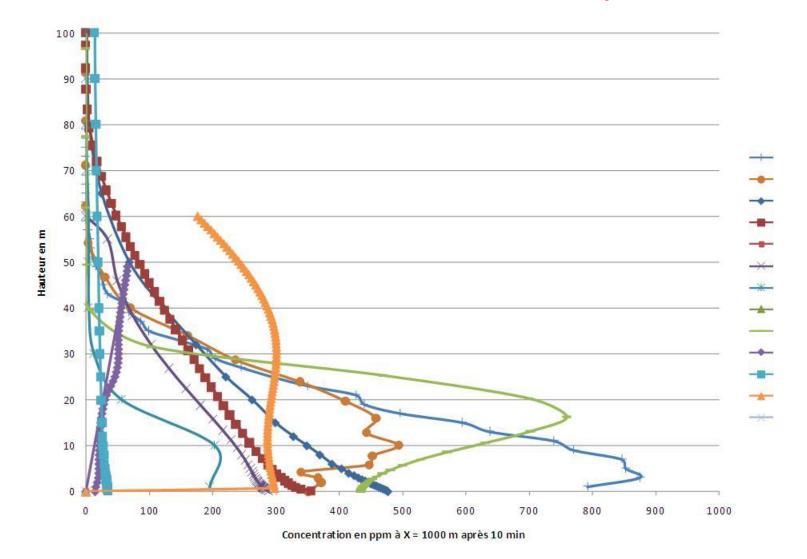
tests

UKELG 49TH DISCUSSION MEETING – October 18th 2012

First case: Free land atmospheric dispersion

3 different toxic gas releases of several kg/s mass flow rate under high pressure through 2 inches hole

- Heavy
- Neutral
- Light


2 different wind profiles

- Stable: F3
- Neutral: D5

Users are fully free: no constrain on wind representation, turbulence modelling, boundary conditions, source term, etc

Results for case 1: Vertical concentration profiles

Learning from case 1

Unacceptable discrepancy in the results

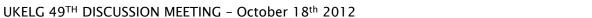
Choice of the models is specific to each user

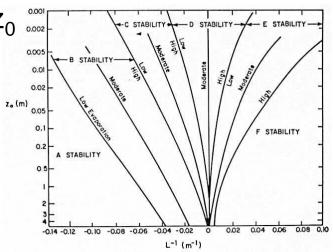
4 major items of choice were identified:

- Interpretation of wind profile as input for CFD
- Turbulence models
- Mesh : cells size
- Source term implementation

Need to harmonize the methodology for these 4 items as far as possible

Relation between wind profiles and CFD approach

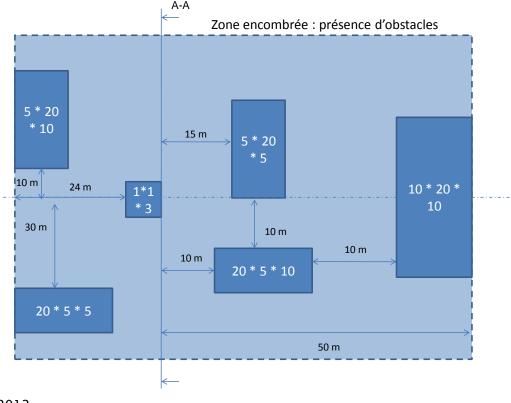

French regulation requires atmospheric conditions as F3 or D5


- But these conditions cannot be introduced easily
- For a condition, several profiles are possible

No interpretation rule exists to build profile for CFD models

- 3 parameters are used as inputs: U_{ref}, LMO et z₀⁶⁰⁰
- Relation of wind class and LMO/z₀ within Golder approach
- Surface boundary layer profile
- Extension above surface layer: Gryning theory

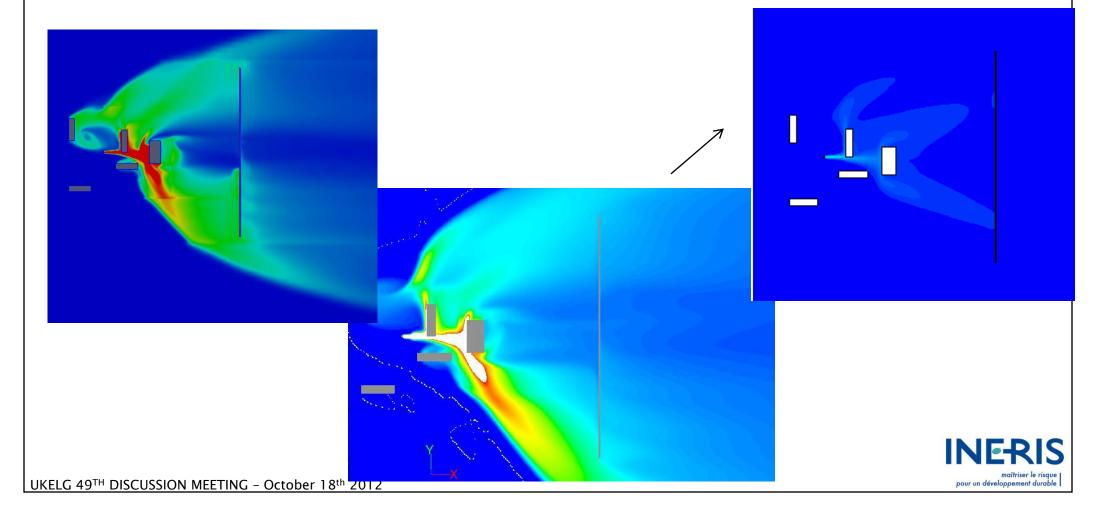
Great work in order to establish a consensus on these parameters


Second configuration: modelling with obstacles

Some parameters were fixed:

- Wind profiles
- Simpler source term

Obstacles were introduced inside the domain



pour un développement durable

Second case: Overview of the results

Differences still observed

Differences between different users of a same code

Turbulence modelling

Two main approaches

- Averaged approach: RANS, mainly k- ϵ
- Large scale turbulence modelling: LES

For similar turbulence models (k- ϵ), most influencing parameters are

- Buoyancy effects
- Surface or volume source term
- Mesh
- Building roughness modelling

Specific work on this topic

- Consideration of turbulence production by buoyancy effects
- Numerical domain must be extended enough upstream first obstacles

UKELG 49TH DISCUSSION MEETING – October 18th 2012

Production of a list of best practices (I)

- The need of a user calibrated code
 - Beyond the validity of the code, user must be aware
 - CFD using requires physical sense for downstream analyse
- Boundary conditions position
 - Necessity of a distance upstream first obstacle
 - Distance of the domain roof
- A consistent mesh
 - Mesh independence
- The use of non dissipative numerical schemes
 - Numerical diffusion → artificial reduction of dangerous area

Production of a list of best practices (II)

- Proposition of wind profiles that correspond to Pasquill classification
 - Possibility to be in accordance with regulation
 - Consistent with the concept of prediction
- Wind profile conservation along the domain
 - Atmospheric turbulence has to be maintained
 - The criteria: F3 at the inlet \rightarrow F3 at the outlet
- Use of a turbulence model that enables taking into account atmospheric phenomena
 - Necessity of taking into account the production term due to buoyancy effects

Atmospheric dispersion modelling tools

What about commonly used models

- Same homogenization to be done for semi-analytical models
- How is modelled wind profile ?
- Is it relevant to model dispersion along cliff with semi-analytical model?

CFD added value

- Definition of wind profile
- Reflection on turbulence modelling

Conclusions

On CFD use for industrial safety

- Not an improvement for simple case
- Appears as a very relevant way for complex cases considering best practices can effectively be enforced
- What is a complex case?

→ Requires a high level of physical knowledge for the user

Perspectives

Regarding WG

- Experimental comparison
- Kit Fox Field with continuous release (180 s)
- Simulations with the proposed <u>best practices</u>
- Still some differences but ... Is it worth than other models ?