

Practical Modelling & Hazard Assessment of LPG & LNG Spills

UKELG 3rd April 2012

Tony Ennis

Introduction

- Refrigerated or pressurised
- Release scenarios & release rate
- Vaporisation
- **Gas dispersion**
- Consequences
 - > Jet fire / Pool fire / VCE / BLEVE
- Ignition potential
- Comparison between LPG & LNG

Hazard Identification

- Based on assessment of potential types of leak
 - Pipe sizes
 - Joints
 - Leak frequencies
- Published data
- Methodology PRA, HAZOP, HAZID etc

Modelling

- Modelling needs to reflect an appropriate range of scenarios
- Use engineering judgement to assess potential failure modes
- Based on equipment configuration
- **Location**
 - > Bunding, surface, congestion, confinement

Pressurised / cryogenic releases

- Pressurised storage
- Ambient temperature
- P = ~8 barg (LPG)
- High release rate
- Jet mixing
- Pool possible
- Flashing flow (long pipes)

Cryogenic storage

- Temperature -50°C to -100°C
- **P** = atmospheric
- **Lower release rate**
- Pool formed
- Instantaneous and long term flash

Modelling

Gas dispersion

- Computer based models
- Statistical
- Affected by buildings etc in near field
- Ignition to LFL/2 isopleth
- Source term definition is critical
- Accuracy +/-30% at best

Key Factors

- Release rate / hole size
- Orientation
- Elevation
- Pipe length, fittings etc
- Pressure & liquid head
- Impingement
- Bund size if present
- Wind / Weather conditions

Release rate comparison (LPG)

Hole size	Pressurised (kg/s)	Cryogenic (kg/s)
1″	2.8	1.7
2″	11.4	6.9
3″	25.6	15.5
4"	45.5	27.6
6″	102.3	62.2

Based on horizontal release at 1m elevation, 15°C, 1m pipe, 5m liquid head

Flammability range based on hole size

Hazard Area

Cloud width

Jet fire to 6.3 kW/m^2

Effect of weather conditions on jet fire

Cryogenic release

- Initial flash of material heat transfer from ground
 / atmosphere
- Vaporisation rate falls as ground is cooled
 - Hazard range large for 1 2 minutes then falls
 - Sensible heat transfer from ground surface
- Ambient heat transfer dominates
- **Size of bund is important**
- □ Atmospheric conditions e.g. solar radiation
- Bund has negligible effect on pressurised release

Pool vaporisation (bunded)

Pool vaporisation (unbunded)

Modelling conclusion

- Bunded cryogenic release minimises size of flammable cloud for given releases
- Bunding of pressurised releases has negligible effect on the size of flammable cloud
- Jet releases can disperse faster than cryogenic liquid in some cases

LNG versus LPG (horizontal release)

- □ LNG storage temp -100°C, LPG -50°C
- LNG longer hazard ranges (up to 2x) but significantly smaller area
- **Similar jet fire hazard range**
- LNG has higher mass flow for given hole size (approximately 2x LPG)
- LNG vaporises much faster

Comparison of 4" release

Graphs to same scale for 4" liquid release, no bund, same conditions

Study Folder: UKELG 2012 Audit No. 7484 Model : 4" release Weather : D5 Material: PROPANE Averaging Time: Flammable(18.75s) Height 0 m Concentration Time: 982.8 s

7087 m2 @ 1E4 ppm 6768 m2 @ 1.05E4 ppm 3725 m2 @ 2E4 ppm 664 m2 @ 9.5E4 ppm

Side view

Effect of weather

Brief discussion

Weather conditions

Normally model:

- > D5: Typical UK conditions (~40%)
- F2: Worst case for dispersion
- > D10 / D15: High wind speed
- Based on local conditions / weather data
- Appropriate temperatures

Pressurised

Cryogenic

Vertical propane releases

Vertical cryogenic LNG

Effects

- D5: Base case
- F2: Generally gives largest plume
 - Stable atmosphere, low temperature, low wind speed
- D10 / D15: High wind speeds give thin and relatively short plumes
 - Wind shear & turbulence break up plume

Hazard Assessment

After modelling, assess the impact, extent & severity

Assessment

- Based on plant configuration
- Pipe sizes
- Credible loss of containment events
- Inventory
- Location issues
- Weather / wind direction

Possible outcomes

Effects

Event	Effects
Jet fire	Thermal radiation; long duration depending on inventory. High thermal flux in jet flame
Flash fire	Thermal radiation; short duration
VCE	Blast overpressure, flame; very short duration. Domino effects from blast
BLEVE	Thermal radiation; short duration (depends on inventory). Vessel fragments & domino effects

Ignition Probability

Vapour Release (te)	Ignition Probability
1	0.6
10	5
100	15
1000	40

Approximate values for ignition of vapour clouds

Ignition / Explosion Risk

Dependent on:

- Mass released
- Congestion / Confinement
- Ignition source presence
- Large release = high probability of reaching an ignition source
- Ignition sources => Off plot / uncontrolled
- Hazardous Area Classification?

Hazard

- Vapour cloud enters
 building or congested
 structure
- Ventilation rate?
- VCE volume?
- Ignition sources?

BLEVE

- Extended thermal radiation on pressurised storage
- Rupture of pressure vessel (petal failure)
- 100 te BLEVE ~20 sec duration
- Minimal overpressure large thermal radiation level

Mexico City BLEVE

Mexico City #2

Site Hazard Assessment

- **Release sources**
- Hazard ranges
- Impingement of jet or pool fire
- Size of cloud
- Congested / confined areas
- Potential for ignition
- **Domino effects**
- Feed results back into HAZOP / PRA

Typical site

Road

Congestion?

Comparison

Pressurised

- Higher release rate for given hole size
- Faster flash of liquid released
- Jet fire & BLEVE
- Tends to disperse more easily (temperature)
- Release orientation important
- Invisible release

Cryogenic atmospheric

- Atmospheric pressure, leak rate based on liquid head
- Flash rate depends on ambient conditions
- **D** Pool fire, no BLEVE
- **Slower to disperse**
- Cold, dense cloud slumps to ground in many cases
- Visible release (condensation)

Conclusions

- Not always initially clear what the worst case will be
- **Density relative to air**
- Take into account geography of plant
- **Look at realistic release cases**
- Cryogenic generally lower hazard than pressurised
- Bunds have significant effect
- Need to carry out careful & detailed analysis
- LPG & LNG dispersion very different

