

CFD analysis for petrol overfilling incidents

Simon Coldrick, Graham Atkinson, Simon Gant

Presentation layout

- Introduction
- Experimental overview
- Computational model
- Model tuning
- Validation
- Sensitivity tests
- Further applications
- Conclusions

Introduction

- Modelling the production of flammable vapour from tank overfilling involves a number of interacting processes
- These have been investigated experimentally
- The scope of the experiments is limited (timescales, geometries etc.)
- CFD modelling can be used to extend this scope

Aims

- To construct a CFD model of a liquid cascade and validate it using experimental data
- To use the validated model to explore other different timescales and geometries
- To inform the Vapour Cloud Assessment method (RR908)

Liquid cascade generation

Cascade dynamics

Experimental overview

CFD Model

- ANSYS CFX 12 software
- Air/vapour flow : Eulerian approach
- Liquid droplets : particle-tracking approach
- Model accounts for:
	- drag force on droplets (entrainment rate predicted)
	- heat and mass transfer (liquid evaporation)
- Model does not account for:
	- Liquid breakup (initial drop size prescribed)
	- Splashing (droplets re-injected from floor)
- Liquid released is hexane

CFD Model

- Hexane droplets released from rectangular area
- Variable width, depth offset, mass flow and particle size
- Splashing particles (if present) injected from ground with prescribed conditions

Liquid temperatures

Distance from wall (m)

Vapour temperatures

Vapour volume

Total volume of vapour $=$ Vapour in domain

Sensitivity to Model Parameters

Mean values in cascade

- Metrics:
	- Vapour volume
	- Liquid temp.
	- Vapour temp.
- Design of experiments

of the mean over all eight simulations

Model Tuning

- **1. Mean liquid temperatures** in cascade controlled primarily by average droplet size
	- Smaller droplets are more cooled

Rosin-Rammler Distribution

(3 different mean diameters)

Model Tuning

- **2. Vapour temperatures in cascade** can be controlled independently by size spectrum of droplets released
	- Higher proportion of small droplets reduces vapour temperatures significantly but has little effect on bulk liquid temperatures

 $\overline{}$ (Mean diameter = 2 mm in all three cases)

Model Tuning

3. Vapour current temperature

governed by splashing droplets almost independently of cascade

Model Tuning to Test 9

Cascade

- Adjust droplet size distribution to match liquid and cascade vapour temperatures
- Adjust splashing droplets to match

Vapour Current

Model Validation with Test 12

Sensitivity studies

- Estimation of source term for vapour dispersion model
- Identification of key parameters for thermodynamic model
- Examination of different liquids and bund arrangements

Fresh air drawn downwards limits concentration

- **Effect of accumulating** vapour layer
- Increased concentration
- Within flammability limit

- Multicomponent cascade
	- Butane
	- Pentane
	- Hexane
	- Decane
- Multicomponent evaporation model applied

Multicomponent cascade

Conclusions

- CFD model has been developed and validated
- The important parameters governing vapour production have been identified
- The model has been used to explore configurations beyond the scope of the experiments
- Model outputs were used to inform the Vapour Cloud Assessment Method
- Modelling the splashing process needs further consideration