

CFD analysis for petrol overfilling incidents

Simon Coldrick, Graham Atkinson, Simon Gant

Presentation layout

- Introduction
- Experimental overview
- Computational model
- Model tuning
- Validation
- Sensitivity tests
- Further applications
- Conclusions

Introduction

- Modelling the production of flammable vapour from tank overfilling involves a number of interacting processes
- These have been investigated experimentally
- The scope of the experiments is limited (timescales, geometries etc.)
- CFD modelling can be used to extend this scope

Aims

- To construct a CFD model of a liquid cascade and validate it using experimental data
- To use the validated model to explore other different timescales and geometries
- To inform the Vapour Cloud Assessment method (RR908)

Liquid cascade generation

Cascade dynamics

Experimental overview

CFD Model

- ANSYS CFX 12 software
- Air/vapour flow : Eulerian approach
- Liquid droplets : particle-tracking approach
- Model accounts for:
 - drag force on droplets (entrainment rate predicted)
 - heat and mass transfer (liquid evaporation)
- Model does not account for:
 - Liquid breakup (initial drop size prescribed)
 - Splashing (droplets re-injected from floor)
- Liquid released is hexane

CFD Model

- Hexane droplets released from rectangular area
- Variable width, depth offset, mass flow and particle size
- Splashing particles (if present) injected
 from ground with prescribed conditions

Liquid temperatures

59.9997 [s]

 Some droplets evaporate completely

Vapour temperatures

Vapour volume

Total volume of vapour = Vapour in domain

Sensitivity to Model Parameters

- Metrics:
 - Vapour volume
 - Liquid temp.
 - Vapour temp.
- Design of experiments

Difference between the high and low values for each input parameter, as a percentage of the mean over all eight simulations

Mean values in cascade

Model Tuning

- **1. Mean liquid temperatures** in cascade controlled primarily by average droplet size
 - Smaller droplets are more cooled

Rosin-Rammler Distribution

(3 different mean diameters)

Model Tuning

- Vapour temperatures in cascade can be controlled independently by size spectrum of droplets released
 - Higher proportion of small droplets reduces vapour temperatures significantly but has little effect on bulk liquid temperatures

(Mean diameter = 2 mm in all three cases)

Model Tuning

governed by splashing droplets almost independently of cascade

Model Tuning to Test 9

Cascade

- Adjust droplet size distribution to match liquid and cascade vapour temperatures
- Adjust splashing droplets to match current temperatures

Vapour Current

Model Validation with Test 12

Sensitivity studies

- Estimation of source term for vapour dispersion model
- Identification of key parameters for thermodynamic model
- Examination of different liquids and bund arrangements

Fresh air drawn downwards limits concentration

- Effect of accumulating vapour layer
- Increased concentration
- Within flammability limit

- Multicomponent cascade
 - Butane
 - Pentane
 - Hexane
 - Decane
- Multicomponent evaporation model applied

Multicomponent cascade

Conclusions

- CFD model has been developed and validated
- The important parameters governing vapour production have been identified
- The model has been used to explore configurations beyond the scope of the experiments
- Model outputs were used to inform the Vapour Cloud Assessment Method
- Modelling the splashing process needs further consideration