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Introduction !@i

* Modelling the production of flammable
vapour from tank overfilling involves a
number of interacting processes

®* These have been investigated
experimentally

®* The scope of the experiments is limited
(timescales, geometries etc.)

* CFD modelling can be used to extend
this scope
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®* To construct a CFD model of a liquid
cascade and validate it using
experimental data

®* To use the validated model to explore
other different timescales and
geometries

® To inform the Vapour Cloud Assessment
method (RR908)



Liquid cascade generation Qm
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Vent

Tank split at

join between
F|Xed'R00f roof and
Tank with sidewalls

Vents (FRV)

Wind-girder

Fixed Roof Tank with
Pressure/Vacuum
Wind-girder Valves (FRPVV)

Floating Deck
Tank without
Fixed Roof
(FD)
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Cascade dynamics

@_iquid flow
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Experimental overview Q
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Liquid storage
tank
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Cascade thermocouples Vapour current
(liquid and vapour) thermocouples



CFD Model @
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ANSYS CFX 12 software
Air/vapour flow : Eulerian approach
Liquid droplets : particle-tracking approach

Model accounts for:
— drag force on droplets (entrainment rate predicted)
— heat and mass transfer (liquid evaporation)

Model does not account for:
— Liquid breakup (initial drop size prescribed)
— Splashing (droplets re-injected from floor)

Liquid released is hexane



CFD Model Q
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* Hexane droplets
released from T
rectangular area S

* Variable width, depth \
offset, mass flow and |
particle size

* Splashing particles
(if present) injected
from ground with
prescribed
conditions




Liquid temperatures
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* Droplets “collected” in

post-processing

®* Some droplets
evaporate completely

Liquid Temperature (°C)
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Vapour temperatures
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Vapour volume Q
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Total volume of vapour = Vapour in domain

+ j (rate of out flowing vapour).dt

P




Sensitivity to Model Parameters @
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* Metrics:
— Vapour volume

— Liquid temp. _
Mean values In cascade
— Vapour temp.

* Design of
experiments
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Model Tuning
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1. Mean liquid temperatures in cascade
controlled primarily by average droplet size

Smaller droplets are more cooled

cy Distribution,

Droplet Volume Frequen

v(D)
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Model Tuning Q
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2. Vapour temperatures in cascade can be
controlled independently by size spectrum of
droplets released

— Higher proportion of small droplets reduces vapour
temperatures significantly but has little effect on bulk
liquid temperatures
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3. Vapour current temperature
governed by splashing droplets
) | almost independently of
cascade




Model Tuning to Test 9 @

’ i * Adjust droplet size
N [ distribution to match
£ liquid and cascade
, vapour temperatures
0 o e Adjust splashing

43 N droplets to match
‘1 s , current temperatures
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Liquid Temperature (°C)

Model Validation with Test 12 .
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®* Same settings used as
“tuned” model gives
good predictions
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Coefficient of variation

Sensitivity studies
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Further Applications

* Estimation of source term for
vapour dispersion model

* |dentification of key parameters for
thermodynamic model

* Examination of different liquids and
bund arrangements
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Further Applications Q
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symmetry
boundaries

ntrainment
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/ | Case | Configuration

D Bund at 5m |

Bund at 10m |

E
F Bund at 15m |
G Sloping bund at | []
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H 4 m wall
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Average
concentration
inside bund to
height of 2 m

Further Applications
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Concentration (mol/mol)
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Concentration (mol/mol)

Further applications Q
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Further applications !@1

* Multicomponent cascade
— Butane
— Pentane
— Hexane
— Decane

* Multicomponent evaporation model
applied




Multicomponent cascade
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Conclusions !@i

CFD model has been developed and validated

The important parameters governing vapour
production have been identified

The model has been used to explore
configurations beyond the scope of the
experiments

Model outputs were used to inform the Vapour
Cloud Assessment Method

Modelling the splashing process needs further
consideration
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