

Explosion properties of nanopowders

P Holbrow Explosion Safety Unit

- Explosible dust
- Particle size
- Oxidant
- Dust concentration
- Ignition source
- Turbulence

Nanopowders

- Engineered nanomaterials
- Unique shapes
- Unique properties
- Size < 100 nm in one dimension

Medicine

Clean water

Energy – Solar plastics

Materials

HSE project

- Potential fire and explosions hazards
- Nanopowder increased surface area to volume ratio
- Spherical 1 micron particle reduced to 100 nm particles increases the surface area x 10
- Increased reactivity

Nanopowders

Explosions violence, dP/dt and Pmax

Test equipment, micron-scale

20 litre sphere

BS EN 14034 series

Typical values:

- Micron-scale aluminium
 Kst 300-700 bar m/s
 Pmax up to 12 bar
- Micron-scale carbon
 Kst up to 151 bar m/s
 Pmax up to 8 bar
 Test material 0.5 1 kg

Nanopowder explosion test apparatus

- 2 Litre enclosed spherical chamber
- 20 bar maximum working pressure
- External dust injection
- Central ignition source
- Piezo-electric pressure transducers

Dispersion nozzle

External dust injection

Nanopowders explosion test apparatus

Control, software, data analysis system

Dedicated fume cupboard and glovebox

Minimum Ignition Energy

MIE – BS EN 13821:2002

- MIKE3 Kuhner
- Modified Hartmann tube
- 1mJ 1 J
- Variables: capacitive discharge, dust concentration, ignition delay
- Typical values for micron powders variable: Aluminium <1-10 mJ

Minimum Ignition Energy

- Existing equipment modifications included:
- Isolation valve and dispersion chamber enables nanopowder to be handled in a sealed system.
- HEPA filtration on the extraction system

Nanopowders

Nanopowder	Sample Number	Information from supplier
Aluminium	EC/104/08	Nominally 100 nm
Aluminium	EC/011/09	Nominally 210 nm
Multi-walled carbon nanotubes	EC/153/07	Outside diameter: 20-30 nm; Inside diameter: 5-10 nm; Length: 10-30 um;
Carbon nanofibre	EC/042/08	Diameter 100-200 nm Length 30-100 micron
Carbon nanofibre	EC/158/07	Outside diameter: 80-200 nm; Core diameter: 1-10 nm; Length 0.5-20 um;
Carbon Nanofibre	EC/116/08	Diameter 70-200 nm Length 2-5 micron
Carbon Nanofibre	EC/117/08	Diameter 70-200 nm Length 2-10 micron
Iron	EC/147/07	APS: 25 nm
Zinc	EC/152/07	APS : 130nm;
Copper	EC/148/07	APS: 25 nm

Commissioning tests – 20 litre sphere

Ignition source	P _{max} (barg)	dP/dt (bar/s)	K _{St} (bar m/s)				
Lycopodium	<63 micron (s	ample EC/02	6/08)				
Electric fuse head	6.5	243	66				
1 kJ Sobbe	7.3	551	150				
5 kJ Sobbe	7.0	620	168				
10 kJ Sobbe	7.3	673	183				
Aluminium 73-109 nm (sample EC/060/07)							
10 kJ Sobbe	9.8	1200	326				

Commissioning tests – 2 litre vessel

Ignition source	P _{max} (barg)	dP/dt (bar/s)					
Lycopodium (sample EC/026/08)							
Electric fuse head	8.2	200					
1 kJ Sobbe	8.7	882					
5 kJ Sobbe	91	1500					
$\frac{3.1}{1000}$							
1 kJ Sobbe	10.8	1450					
2 kJ Sobbe	9.8	1950					
5 kJ Sobbe	9.5	5000					

Commissioning tests – Ignition strength in the 2 litre vessel (without dust)

Ignition source	P _{max} (barg)	dP/dt (bar/s)
Electric fuse head	0.2	3.3
1 kJ Sobbe	1.05	75
2x1kJSobbe	1.5	154
5 kJ Sobbe	42	250

Commissioning tests – comparison of 20 litre and the 2 litre vessel

Material	20 litre sph	nere results	2 litre results	sphere	
	Rate of pressure rise (bar/s)	K _{st} (bar m/s)	P _{max} (bar)	Rate of pressure rise (bar/s)	P _{max} (bar)
L y c o p o d i u m E C /0 2 6 /0 8	673	183	7.3	700	7.7
A l u m in i u m E C /060/07	1200	326	9.8	1450	10.8
Zinc stearate EC/118/08	1080	293	7.6	1400	8.2
Coal EC/120/08	558	151	7.4	600	7.3
Toner EC/122/08	714	194	7.5	725	6.3
Carbon black EC/076/07	382	104	7.8	320	6.2
A lu m in iu m E C /1 0 4 /0 8	2368	643	12.0	2000	11.2

Commissioning tests – comparison of 20 litre and the 2 litre vessel

Rate of pressure rise in 2 litre vessel (bar/s)

Nanopowder explosion tests

Material	Pmax (bar g)	dP/dt (bar/s)	Equivalent Kst (bar m/s)	MIE (mJ)
Aluminium nanopowder (210 nm)	12.5	1677	449	<1
Aluminium nanopowder (100 nm)	11.2	2000	536	<1
Iron	2.9	68	18	<1
Zinc	5.6	377	101	3 - 10
Copper	1.2	10	3	> 1000

Nanopowder explosion tests

Material	Pmax (bar g)	dP/dt (bar/s)	Equivalent Kst (bar m/s)	MIE (mJ)
Carbon nanofibre	5.2	62.5	17	Not measured
Carbon nanofibre	6.0	112	30	Not measured
Carbon nanofibre	6.9	591	158	>1000
Carbon nanofibre	5.6	137	37	Not measured
Multi- walled carbon nanotubes	6.4	339	91	>1000

Nanopowder v micron-scale powder

Nanopowder			Micron-scale powder (typical range o data)			ange of	
Material	Particle size	P _{max} (barg)	Equivalent K _{St} (bar.m/s)	Material	Particle size	P _{max} (barg)	K _{St} (bar m/s)
Aluminium nanopowder (210 nm)	210 nm	12.5	449	Aluminium	Median <10- 100μm	Median 7-12 :10- 00μm	300- 700
Aluminium nanopowder (100 nm)	100 nm	11.2	536				
Iron nanopowder	25 nm	2.9	18	Iron	Median 12μm Median 32μm	5.2 5.1	50 41
Zinc nanopowder	130 nm	5.6	101	Zinc	Median 160μm Median 10μm	0.7 7.3	2 176
Copper nanopowder	25 nm	1.2	3	Copper	Median 25 μm	No ignition	No

Nanopowder v micron-scale powder

Nanopowder			Micron-s	cale powder (t data)	ypical ra	nge o	
Material	Particle size	P _{max} (barg)	Equivalent K _{St} (bar.m/s)	Material	Particle size	P _{max} (barg)	K _{St} (bar m/s)
Carbon nanofibre EC/42/08	Dia 100- 200 nm Length 30- 100µm	5.2	17	Carbon	100%<63μm 100%<63μm	8 7.1	151 43
Carbon nanofibre EC/158/07	Dia 80- 200 nm Length 0.5-20μm	6.0	30				
Carbon nanofibre EC/116/08	Dia 70- 200 nm Length 2-5μm	6.9	158				
Carbon nanofibre EC/117/08	Dia 70- 200 nm Length 2-10 μm	5.6	37				
Multi- walled carbon nanotubes FC/153/07	Dia 20-30 nm Length 10-30µm	6.4	91				

Aluminum sample EC/11/08 – 2 litre sphere test results

Aluminum sample EC/11/08 – 2 litre sphere test results

Carbon nanofibre sample EC/042/08 – 2 litre sphere test results

Aluminium sample EC/104/08 – 2 litre sphere test results

Nanopowder explosion test apparatus

Aluminium nanopowder explosion

Electrostatic Charging

Resistivity test cell ρ = 0.001 Rs [H × W/L]

Charge test apparatus $I = C \times dV/dt$

Resistivity

Resistivity v Relative Humidity for Aluminium Powders

Resistivity

Charge – Carbon Nanofibres

- All the powders produced charge,
- Some materials developed negative and some developed positive charge.
- Generally, the charge developed by nanopowders was comparable with the micron-scale powders.

Rate of cha	ange of voltage (V/s)	Capacitance (F)	Current (A)
	-1.16E-02	1.05E-06	-1.22E-08
Ambient envir	onmental conditions:		
Humidity:	65.3%RH		
Temperature:	17.8°C		

Conclusions

- Special equipment has been developed to measure the explosion characteristics and electrostatic properties of nanopowders
- Explosion characteristics measured to-date are broadly comparable with micron-scale powders
- MIE zinc and iron more ignitable than micron-scale powders
- Electrostatics resistivity and charging tests increasing relative humidity resulted in decrease in resistivity.
- Resistivity generally greater than micron-scale powders