

	Outline	
1. Introduction		
2. Physical model		
3. Mathematical model		
4. Results		
5. Conclusions		
22/09/2010	46th UKELG Discussion Meeting	2

New Possibilities				
 New possibilities Lower intensity Distance ignition No divergence of lase Desired temporal and Homogeneous ignitio Invariant gas-dynami 	10 ⁹ W/cm ² against 10 ¹¹ W/cm ² er beam d spatial distributions of ignition centres on within sub-microsecond interval cal conditions over a large volume of mixture			
22/09/2010	46th UKELG Discussion Meeting	6		

	Objectives	
 To develop physic up-to-date numeri To study laser-inde mixtures and to de methodology To develop knowle produce recomment 	al and mathematical models and ical methodology for computer modeling uced detonation in gas-dispersed emonstrate advantages of the new edge-based guidance in industry and to endations	
22/09/2010	46th UKELG Discussion Meeting	8

Low-Level Models			
 Heating, evaporation, formation of vapour aureole Appearance of free electrons due to thermal ionisation on shock wave front Development of electron avalanche Heating of vapour aureole due to electron and atom collisions Heating of electron component Ionisation of vapour aureole due to electron impact Change of mass of particle Chemical reactions Expansion of shock wave 	J		
22/09/2010 46th UKELG Discussion Meeting	15		

High-Level Model			
 Eulerian approach (multi-velocity and multi-temperature continuum) Computational procedure Finite volume method (model of real gas) Splitting scheme on physical factors (Chakravarthy–Osher scheme) Artificial pressure for particulate component Monte Carlo method for thermal radiation transfer 			
Fraction & Volume Source terms)		
22/09/2010 46th UKELG Discussion Meeting	16		

Liquid Droplet						
Q., J	Break	down c	conditio	ons, r _p	= 5 µm	$r_{\rm p} = 10 \ \mu {\rm m}$
Competitive factors	Q, J	t _e , μm	α	$T > T_e$	Yes/No	Q, J <i>R</i> , mm
50- Time of explosive	5	-	-	-	-	12 1.5
transformation	10	1.83	10-2	+	+	20 3
⁴⁰ Development of electron	15	1.38	10-2	+	+	30 5
avalanche	20	1.13	10-2	+	+	
Breakdown	30	0.93	10-2	+	+	Laser spot
20	50	0.72	10-2	+	+	
10- No breakdown	Breakdown conditions, $r_{\rm p} = 20 \ \mu {\rm m}$					
	Q, J	t _e , μm	α	$T > T_e$	Yes/No	
0 5 10 15 20 25 30 35	5	-	-	-	-	
r _p , μm	10	-	-	-	-	
Pependence of threshold value on	15	1.48	10-11	+	-	
size of droplet	20	1.23	10-11	+	-	
0120 01 0100101	30	1.04	10-11	+	+	
t_e , T_e – time and temperature of	50	0.83	10-11	+	+	
explosive transformation						-
22/09/2010 46th UKELG Discussion Meeting 24				24		

Conclusions	
 Contribution to theory Multi-phase flows Optical breakdown and detonation Tool of engineering analysis Physical phenomena Engineering solutions for industry Use in technology Design and optimization of energy systems Control of particle combustion Education Course material MSc/PhD programme 	
22/09/2010 46th UKELG Discussion Meeting	27

	Future Work	
• Nano-particles • Molecular dyna	mics simulation	
22/09/2010	46th UKELG Discussion Meeting	28

