Lightweight Cable Supported Structures subject to Blast Fragmentation – An Overview

*Ryan Judge, Arup

Dr Zhenjun Yang, Dr Steve Jones, University of Liverpool

Dr Greg Beattie, Dr Rob Harrison, Arup

This study is funded by **UK EPSRC** and **Arup** through an industrial **CASE project (No. CASE/CNA/07/107)**

Context

• The use of high strength steel tension cables is a popular trend in the design and construction of stadia, bridges and other structural forms.

• But questions remain regarding their robustness and resilience when subjected to highly transient loading conditions in the form of:

High velocity fragment impact

• Recent research highlights cable vulnerability to failure when subjected to such loading conditions (Zoli, 2009).

Current methods of protection!

A CASE STUDY PROJECT

Method - Predictive Numerical Simulation

• A complete description of **HIGH VELOCITY FRAGMENT IMPACT** would have to account for the following:

- Geometry of the interacting bodies
- Elasticity and plasticity
- Shockwave propagation
- Hydro-dynamic material flow
- Finite strains
- **Deformations**
- Work hardening
- Thermal and frictional affects
- Inertia affects
- Initiation and propagation of failure

Numerical solution of full equations of continuum physics coupled with an appropriate constitutive material model

IMPORTANT - Constitutive relation

• A complete material description under **HIGH VELOCITY IMPACT**; stress-strain response highly dependant on strain, strain rate, temperature **AND** accumulation of damage and failure.

(Modified Johnson-Cook Model – Borvik et al. 2001) $\sigma_{eq} = [1 - D][A + Br^n][1 + \acute{r}^*]^C[1 - T^{*m}]$

 The damage variable D - 0 (un-damaged) and 1 (fully-broken). Material fracture occurs at D = Dc (<1).

First Question; How Fast do Fragments Travel? Option 2

Use TM 5-1300 – Assume fragments are PRIMARY

 $Vs = Vo e^{-[12kvRf]}$

 $kv = (A/Wf) \rho_a C_D$ which is the velocity decay coefficient and Rf is the range or distance from explosion under consideration.

UK Conference on Computational Mechanics 2010 A study on the effects of Fragment Mass 730kN

- Fragment Elastic-Plastic bilinear relation.
- Bar MJC relation.
- Mesh 8 noded solid elements, single integration points
- 4 simulations with;
 L = 20, 40, 60, 80mm

ARUP

UK Conference on Computational Mechanics 2010

Kinetic Energy Transfer

• Penetration and/or perforation governed by - $\mathbf{K} = \frac{1}{2} \mathbf{mV}^2$

1. Strain energy in bar (global elastic deformation)

2. Localised damage and failure (localised plastic flow)

3. Strain energy in deformed fragment (elastic – plastic deformation)

UK Conference on Computational Mechanics 2010

Results and Discussion

UK Conference on Computational Mechanics 2010 What's most interesting.....

Perforation plots for L = 40mm fragment

Perforation plots for L = 20mm fragment

Conclusions

 Fragment mass has significant effects on the perforation and penetration process in terms of energy absorption.

- Lower energy overall global response
- Higher energy localised response
- In all cases rupture occurs as a result of the significant crosssectional damage sustained on impact.
- Further parametric modelling is being carried out to study the effects of alternate fragment velocities, fragment shape, fragment hardness, angles of impact and glancing blows.

Effects of velocity range - 1800 & 900m/s

Effects of obliquity and glancing blows

Other parametric studies

The effects of projectile nose shape

Borvik, T. Hopperstad, O.S. Berstad, T. Langseth, M. 2000. Perforation of 12mm thick steel plates by 20mm diameter projectiles. Int. J. Impact Engineering. <u>27</u>, pp.37 -64

The effects of fragment hardness

Tool hardened Steel (1500N/mm²) Mild Steel (275N/mm²)

ARUP

LIVERPOOL

Spiral Strand Cable Model Building

Spiral Strand Cable Impact Modelling

Future work

- Calibration of the modified Johnson-Cook model for the wire strands
- Carry out spiral strand impact modelling and validate against work by Zoli
- Cable impact testing
- Begin termination modelling
- Begin termination to cable modelling
- Aim to submit journal paper mid to late 2010

Thankyou.....any questions

