

Application of detailed kinetic models to ignition processes, limitations

Andrzej Pekalski Shell Global Solutions Shell Technology Centre Thornton Andrzej.Pekalski@shell.com

Scope

- Introduction: industrial need
- Autoignition Temperature (AIT) = Minimum Ignition Temperature (MIT), Self-ignition Temperature (SIT),
- Minimum Ignition Energy (MIE)

• Some results (theoretical, experimental) based on EU project (Safekinex) and past work at Delft University of Technology

Conclusions

Explosion prevention thus

Some of important explosion sensitivity indices are

Auto-ignition Temperature (AIT),

Determination modes: Shock tubes, Rapid compression machines, Constant volume bombs Practical challenges τ, mixing, h

Minimum Ignition Energy (MIE)

Ample evidence these indices are affected e.g. by:

- Pressure \uparrow AIT \downarrow MIE \downarrow
- •Temperature \uparrow AIT NA MIE \downarrow
- Heat loss ↑ AIT ↑ MIE ↑
 (turbulence, apparatus conditions)

Can one relay on ambient conditions data?

Current status

Determination practice

Standards exist for

AIT, constant volume bomb only, ambient pressure

MIE, ambient pressure and temperature

Is that sufficient? !

AIT Constant Volume Bomb ASTM E 659 – 78 (2005)

- Atmospheric pressure
- T max approximately 600 ℃
- 500 ml borosilicate glass
- 10 minutes observation
- Liquid samples
- Open vessel
- Ignition appearance of a flame accompanied by a sharp T rise

heat loss natural convection induced

Open-closed flask CH4-C2H4-O2 mixtures

depending on the closure mode of the vessel

Modes of heat transfer - Rayleigh Number (Ra)

$$Ra = g\beta r^{3}C_{p}\rho^{2}\Delta T / \lambda\eta$$

Ra < 600:</th>conduction $600 < Ra < 10^4$:conduction and convectionRa > 10^4 :convection

Natural convection assists laboratory SIT experiment: (1g) => importance assessment of timescales (chemical reaction, heat conduction, natural convection, heat diffusion del T) => complexity

Work in progress

University of Cambridge under Dr S. Cardoso

Comparison between experiments and numerical calculations; combustion phenomena

Shell Global Solutions

11

C4/air mechanism of CNRS Nancy

Logarithmic scale presentation of the negative temperature coefficient of various nbutane-air mixtures, P0= 1 bara, mole fraction of n-butane is in the legend, calculations.

Auto-ignition times for different volumes; 100, 200, 500 ml

Auto-ignition times for different volumes; 100, 200, 500 ml

Minimun Ignition Energy

Source: University Karlsruhe, Germany, dr Max Weiß, Prof. N. Zarzalis

Source: University Karlsruhe, Germany, dr Max Weiß, Prof. N. Zarzalis

Simulation Tool: INSFLA and COSILAB:

- one-dimensional
- solving unstead flames
- detailed kinetic scheme (HTOM)

Influence of energy deposition time and radius on the MIE

Source: University Karlsruhe, Germany, dr Max Weiß, Prof. N. Zarzalis

Conclusions

- Self-ignition phenomena in complex (realistic) conditions.
- 2. Measurement of AIT, MIE at elevated (process) conditions is a challenge
- 3. Better understanding
- 4. Good resolution on kinetic scheme or flow.

Thank you for your attention

Questions ?

Shell Global Solutions

19