Health and Safety Executive

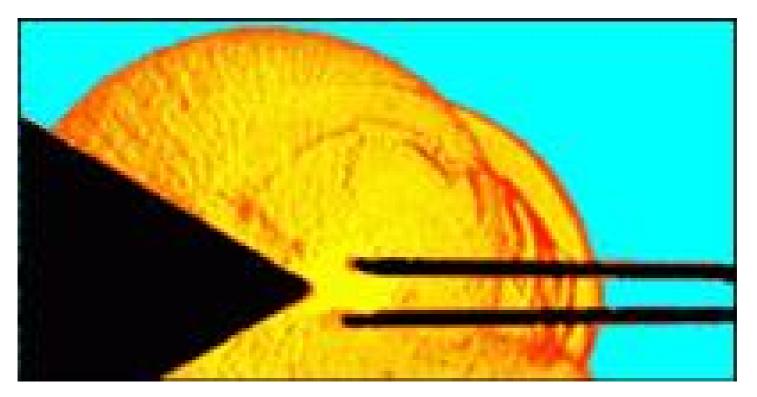
BASIC PHENOMENOLOGY OF DEFLAGRATION, DDT AND DETONATION

Helen James

Health and Safety Executive, Bootle

Deflagration and Detonation

Deflagration:


 Subsonic, typically 1 m/s and 7 to 10 bar starting at ambient pressure

Detonation:

- Supersonic
- High pressure shock front ahead of the reaction zone (i.e. flame)
- Adiabatic compression gas autoignites
- Average pressure 15 to 19 bar (lean), 25 to 30 bar (stoichiometric)
- Typical peak pressure up to 50 bar (but see later)
- Typical velocity 1,500 to 3,500 m/s (Mach 4 to 8)
- Flame temperature 1,600 K (lean) to 2,300 K (stoichiometric)

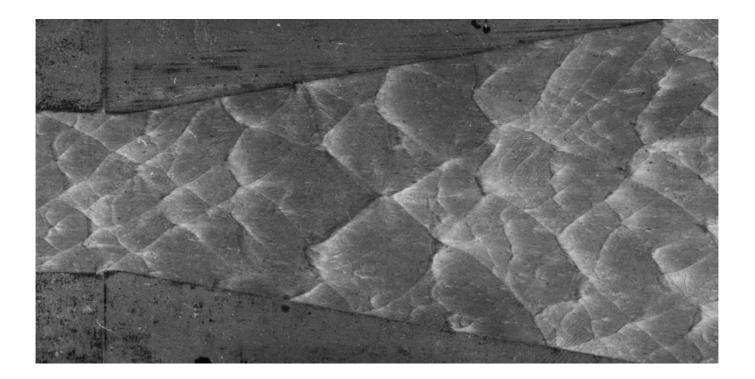

Direct initiation of a spherical detonation by an exploding wire (courtesy of Geraint Thomas, Combustion Hazard Research)

Deflagration and Detonation (cont.)

Direct initiation of a cylindrical detonation (courtesy of Geraint Thomas, Combustion Hazard Research)

- Examples of materials that can detonate in air: hydrogen, acetylene, ethylene, ethane, propane
- Solvent vapours in tests depends on size of ignition source
- Detonation limits:
 - Use with caution!
 - Examples from literature: ethane/air 3 to 7% v/v (2 to 10% v/v for deflagration), hydrogen/air 18 to 59% v/v
 - Widen as confined volume increases
 - Narrower if unconfined
 - Effect of temp very limited data, tend to widen with increasing temp

Structure of a Detonation



- From high speed photography and soot tubes
- 3D cellular structure, constantly changing
- Cell width λ is a fundamental parameter. Typical values:
 - 8 mm for hydrogen
 - 20 mm for ethylene
- For detonation emerging from end of pipe, critical pipe diameter diameter typically:
 - 13 λ for a pipe with circular cross-section
 - -10λ for square cross-section
- Also criteria in literature for propagation of detonations:
 - Emerging from confined to unconfined areas
 - Through orifices and slots
- Unconfined clouds:
 - Can calculate minimum cloud diameter for detonation
 - Likely to be at least 50 m based on current understanding

Structure of a Detonation (cont.)

Smoked foil of detonation propagating through an area change (courtesy of Geraint Thomas, Combustion Hazard Research)

Theories

Chapman-Jouguet

- Early 1900's
- 1D model, reaction infinitely fast
- Average CJ pressure $\approx (\gamma M^2/\gamma + 1)P_i$, where $\gamma = c_p/c_v$, M = Mach number and P_i = initial pressure
- Peak CJ pressure = $[(2\gamma M^2/\gamma+1) (\gamma-1/\gamma+1)]P_i$
- Calcs on pressure (average and peak) and velocity compare fairly well with data
- May need to increase calculated pressures (e.g. double suggested in George Munday paper – see refs) for industrial applications, due to effects of high sustained pressures and shock loadings on real plant
- CAN'T use to calc detonation limits, critical pipe diameters etc.

Theories (cont.)

Zel'dovitch, von Neumann and Doring

- Independently proposed in 1940's
- Shock wave followed by reaction zone
- 1D model
- Calculations of pressure and velocity compare fairly well with data
- Can also calculate detonation limits, critical pipe diameter etc, but don't agree so well with data

Computer modelling

- Three types: empirical, phenomenological, CFD
- Review by Stefan Ledin, Health and Safety Laboratory (see refs)

- Turbulence wrinkles flame front
- Flame accelerates
- Critical velocity approx. 150 m/s
- Shock forms ahead of flame piston
- Very reactive fuels more sensitive to DDT
- Turbulence from:
 - Confinement e.g. gas cloud near pipe track
 - Bends in pipes etc.

- Run-up distance:
 - L/D approx. 10 to 60 (3 for acetylene)
 - Can be calculated
 - Need suitable safety factor (e.g. half?) for industrial applications:
 - Most tests in smooth glass pipes < 50 mm diameter
 - Industrial pipes have rougher internal surface, so greater friction
 - Also drag effects less significant in wider pipes
 - Tends to decrease as pressure increases, increase as temperature increases
- Critical pipe diameter $d_{crit} \approx \lambda/\pi$:
 - − e.g. stoichiometric hydrogen/air: $\lambda \approx 1.5$ cm, so d_{crit} ≈ 0.48 cm
 - Beware of data from inappropriate test conditions e.g. short, narrow tubes
 - Need suitable safety factor (e.g. half?)

Enhanced Pressure Effects

- Overdriven detonation:
 - Accelerated beyond steady-state due to turbulence
 - Up to 100 bar
- Pressure piling:
 - Mixture pre-pressurised, e.g. by earlier flame, flow restriction in pipe or connected vessels
 - Pressure depends on compression ratio
 - Also by flame reflected at end of line
 - Pressure typically 2 to 5 times steady-state detonation pressure
 - Enhanced pressure effects sometimes very transient, sometimes not
- Galloping detonation:
 - Near to detonation limits
 - Cyclic fluctuation in velocity, typically 0.5 to 1.5 CJ velocity
 - Severe damage where velocity peaks

Enhanced Pressure Effects (cont.)

Retonations

- Part of the shock travels back through the burnt mixture
- Can reflect off e.g. bend or closed end
- Overtakes detonation increased speed of sound in hot burnt gases
- Combined detonation/retonation
 - Very short-lived
 - Pressure 3 to 8 times higher than usual

Venting

- Vents can induce turbulence and lead to DDT
- Most likely if mixture is sensitive, rich and small amount of venting
- Tests with rich hydrogen/air:
 - 13% top-venting overpressure increased
 - 50% top-venting overpressure reduced
- Venting alone unlikely to be adequate for protection against detonations

Effects of Detonations

- High pressures and velocities enormous dynamic loads
- No general rules
- Often lots of small fragments
- Large distorted fragments if vessel sufficiently strong
- Often pipes fail at bends and joints
- Can get failures at fairly regular intervals:
 - Accelerated to DDT
 - Decelerates when pipe fails
 - Accelerates again
- Positions of fragments and metallurgical examination can be useful

Mitigation

- Don't form a detonation!
- Containment: German standard TRbF100 = 50 bar
- Passive detonation arresters:
 - Need temperature detection
 - Won't usually withstand repeated detonations or oxygen-enriched mixtures
 - Potential for high back-pressure and blockage
 - Tests at Health and Safety Laboratory
- Active detonation arresters:
 - Rapid isolation valves close in 20 to 40 ms
 - Plus suppressant canisters ahead of valves activate in 10 to 20 ms
 - May also need venting

References

- "Detonations in Pipes and Vessels", George Munday, The Chemical Engineer, April 1971, pp.135-144
- "Gaseous Detonations: Their Nature, Effects and Control", M.A. Nettleton, Chapman and Hall, 1987
- "Detonations", HSE guidance note ref TD5/039, by Helen James, October 2001: http://www.hse.gov.uk/foi/internalops/hid/din/539.pdf (contains over 50 references)
- "A Review of State-of-the-Art in Gas Explosion Modelling", HSL report HSL/2002/02, by Stefan Ledin:

http://www.hse.gov.uk/research/hsl_pdf/2002/hsl02-02.pdf