A Dynamic Sub-grid Scale Model for LES of Deflagrating Flames

S R Gubba, Salah S Ibrahim and Malalasekera W

Faculty of Engineering Loughborough University Loughborough, LE11 3TU, England

40th UK Explosion Liaison Group Meeting 25th Anniversary Conference 19 – 20th September 2007, Cardiff University, UK

Outline of the Presentation

- **Objectives**
- Why LES ?
- \bigcirc Sub-grid Scale (SGS) Reaction Rate Models
	- Simple Algebraic Model
	- Dynamic Model
- Experimental Explosion chamber
- Results
- **Conclusions**
- Further work

Objectives

To develop and test a dynamic sub-grid scale (SGS) model for chemical reaction rate.

 \odot Numerical Implementation of the dynamic SGS model.

Accounting the un-resolved SGS reaction rate contributions.

 \odot Studying the effect of turbulence level and length scales on burning rates.

 \odot Identifying the interactions between flame front and the flow field.

Why LES ?

The unique feature of LES is filtering the scales in the exact solution into two categories; (i) Resolved (ii) SGS.

Resolved scales or large eddies are computed explicitly and the SGS or small eddies are modelled.

 \odot Accuracy of the solution – (a) Percentage of the energy (b) Sub-grid scale models

Affordable computational times.

 \odot In between RANS and DNS.

Governing Equations

Mass Conservation

C Energy Equation

$$
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_j)}{\partial x_j} = 0
$$

Momentum Conservation

$$
\frac{\partial(\rho u_i)}{\partial t} + \frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial \sigma_{ij}}{\partial x_j}
$$

$$
\frac{\partial(\rho h)}{\partial t} + \frac{\partial(\rho u_j h)}{\partial x_j} = \frac{\partial P}{\partial t} + \sigma_{ij} \frac{\partial u_j}{\partial x_i} - \frac{\partial q_j}{\partial x_j} + q_c
$$

B. Reaction Progress Variable Equation

$$
\frac{\partial \rho c}{\partial t} + \frac{\partial (\rho u_j c)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\mu}{\text{Sc}} \frac{\partial c}{\partial x_j} \right) + \dot{\omega}_c \quad \text{where } c = 1 - \frac{Y_{fu}}{Y_{fu}^o}
$$

 $\overline{\odot}$ State Equation

P = ρ*RT*

19/09/2007 Loughborough Universtiy, England

Reaction Rate Models (1/3)

(A) Simple Algebraic Model:

 $\bm{\mathsf{Reaction}}$ rate is defined as $\quad \dot{\bm{\mathit{w}}}_c = \bm{\mathit{\rho}}_u \bm{\mathit{u}}_L \bm{\Sigma}$ where as $\bm{\rho}_{u}$ is the density of un-burned mixture, $\boldsymbol{\mathit{u}}_L$ is the laminar flame speed and Σ is the flame surface density Over bar indicates filtering operation Based on flame surface density concept

$$
\overline{\Sigma} = 4\beta \frac{\tilde{c}(1-\tilde{c})}{\overline{\Delta}}
$$

Reaction Rate Models (2/3)

(B) Dynamic SGS model :

Objective of the dynamic model is to identify the un-resolved flame surface density contribution and to account them.

The Flame surface density $\Sigma = \nabla c \, |$ is the main term to be model.

$$
\overline{\Sigma} = \left| \overline{\nabla c} \right| = \underbrace{\prod\left(\overline{c}, \overline{\Delta}\right)}_{\text{Resolved}} + \underbrace{\left(\left| \overline{\nabla c} \right| - \prod\left(\overline{c}, \overline{\Delta}\right) \right)}_{\text{Unresolved}}
$$

Following similarity ideas of Germano and assuming sub-grid scale contribution of unresolved FSD at test filter, we can write dynamic SGS equation as

$$
\overline{\Sigma} = \prod (\overline{c}, \overline{\Delta}) + K \cdot \left[\prod (\overline{c}, \overline{\Delta}) - \prod (\hat{\overline{c}}, \hat{\overline{\Delta}}) \right]
$$

Reaction Rate Models (3/3)

 $\mathcal{K}_{\!s}$ is the model coefficient, which can be dynamically calculated by identifying sub-grid scale flame surface as a fractal surface.

$$
Ks = \frac{1}{1 - \gamma^{2-D}} \left[\left(\frac{\overline{\Delta}}{\delta_c} \right)^{D-2} - 1 \right]
$$

where γ is the ratio of test filter to grid filter, D is the fractal dimension and δ_c is the lower cut-off length.

Dynamic model for *D:*

$$
D = \frac{2.19}{\left(\frac{u'_\Delta}{u_L} + 1\right)} + \frac{2.35}{\left(\frac{u_L}{u'_\Delta} + 1\right)} \qquad D = 2 + \frac{\log\left(\left(\prod \widehat{(\overline{c}, \overline{\Delta})}\right) / \left(\prod \widehat{(\overline{c}, \overline{\Delta})}\right)\right)}{\log \gamma}
$$

Model I

19/09/2007 Loughborough Universtiy, England

Experimental Test Case (1/2)

- 50 x 50 mm cross-section
- \circ 250 mm length
- 0.625 Liters
- Dual Assembly System \odot Inner assembly secures turbulence inducing obstacles Outer assembly encapsulates inner assembly \odot Held together by draw bolts Fuel: LPG (88% C₃H₈ , 10% | C_3H_6

Experimental Test Case (2/2)

Obstacle Geometry

- to 1x Square Obstacle 12x12 mm cross-section
- Up to 3x Turbulence Generating grids (baffles)

Aluminum baffles of 5 x 4mm Strips rending a blockage of ration of 40%.

Computational Domain

- 3-D, non-uniform Cartesian co-ordinate system.
- Chamber is of 50 x 50 x 250 mm and is extended to 325 mm in *x*, y and 250 mm in z direction with the far-field boundary conditions .
- \odot 3 grids of 0.25, 0.55 and 2.7 million resolution.
- \odot Solid boundary conditions are applied at walls, baffles and obstacle, with the power-law wall function.
- \circlearrowright Out-flow boundary condition at the top of domain.
- \odot The initial conditions are quiescent with zero velocity and reaction progress variable.

Results (1/7)

Key Findings:

Fine grid results are in good comparison with experimental measurements.

Additional reaction rate due to the unresolved flame surface density is successfully captured.

 \odot Both the models for fractal dimension has predicted the fractal dimension well.

 \circlearrowright The dynamic model is able to predict overall flame structure, speed and propagating mechanism.

Results (2/7)

19/09/2007 Loughborough Universtiy, Time traces of the over pressure from LES of dynamic SGS model and experimental measurements

England

Results (3/7)

Time traces of Peak over pressure Time traces of Flame speed

Results (4/7)

Time traces of Flame position Flame position vs. Speed

19/09/2007 Loughborough Universtiy, England

Results (5/7)

19/09/2007 Loughborough Universtiy, England Sequence of images to show flame structure at different times after ignition.

Results (6/7)

England

19/09/2007 Loughborough Universtiy, Reaction rate Kg/s

Un-resolved

contributions

Flame after 11.0 ms of the ignition using dynamic sub-grid scale model.

Reaction rate

Dynamic sub-grid scale model Simple algebraic model

Conclusions

- LES simulations were carried for turbulent premixed deflagrating flame using two models for reaction rate, namely a novel dynamic sub-grid scale model and the conventional FSD models.
- \bullet The new dynamic model is implemented, tested and results are compared with the experimental measurements.
- \bullet The dynamic model has remarkably predicted the contributions of unresolved SGS reaction rate and the overall features of the turbulent propagating flame.
- \bullet Fractal dimension is calculated using an empirical and a dynamic model. Both the models predicted the turbulent premixed flames successfully.
- \bullet Overall, the LES simulations with dynamic model are very encouraging to simulate more complex premixed flames.

Further Work

- \bullet Identifying the proper model for lower cut-off length.
- •Studying other flow configurations using dynamic model.
- • Parametric analysis of the model in terms of the present explosion chamber.
- • Identifying the possibilities to extend this model for detailed chemistry problems.