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Gas Phase vs Condensed Phase Detonations

• simple thermodynamics

• cell structure can be measured

• role of turbulence

• no mass transfer control

• near CJ conditions

• supercritical fluids

• heterogeneity, hot spot control

• VOD < VODCJ

• limited characterization

• pronounced shock front curvature



Condensed Phase Detonations

• mining, quarrying, seismic applications

• demolition, tunneling

• safety eg FCMO, transport

• defence

• security & improvised devices

EPSRC Condensed Phase Reactive Flow Network
http://www.dcmt.cranfield.ac.uk/dmas/cdc/condphase



Modeling of the Detonation (and Rarefaction) Processes for    
Commercial (Non-Ideal, heterogeneous) Explosives in Rock

• Simple Theoretical Approach

• Validation using AMR Finite Volume code

Pressure History at Detonation Product – Rock
Interface for Shock, Detonation (and Rarefaction)



Ammonium Nitrate Based Bulk Explosives – ANFO, Emulsions

• Heterogeneous, gas sensitized

• Large critical diameter (detonation) & VOD < Ideal VOD

• Limited characterization studies for most explosives 

eg separate oil and oxidiser phases
porous prill, chemical gassing

ex critical diameter > 30 mms
reaction zone (DDZ) > 10 mms

Typically, unconfined VOD vs charge diameter
Density and thermodynamic parameters
Limited Shock Front Curvature data (unconfined)
Particle, droplet size distributions



Confinement – Rock
Compression, crack propagation,fragmentation
and muckpile formation

• Non-isotropic

• Variable properties – strength, composition, density

• Acoustic velocity < VOD – This study



Detonation 

• Steady state , axisymmetric

• Homogeneous media

• Simple EoS, thermodynamics and rate law for both
the explosive, detonation products and confinement

nb major aim of this work is to ascertain where fluid mechanics
approximations in quasi-1-D theories are valid – therefore
not a test for EoS or thermodynamics

• Detonation Velocity greater than sound speed
of confining media



(i) Are the fluid dynamics in a quasi-one 
dimensional theory adequate to 
approximately describe the detonation 
process for central axis and product-
confinement interface in the context of rock 
blasting ?

(ii) What resolution is required in a finite volume
computer simulation study such that the DDZ
predictions are invariant with grid size ?

(iii)  Is some order of DSD theory as opposed to
Wood Kirkwood slightly divergent flow appropriate
to the rock blasting problem ?
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Condensed Phase Detonations - Model

• Conservation relations (Euler equations)
Mass
Momentum
Energy

• Thermodynamic EoS – all phases
P, V, T, E relations
Mixing rules (finite reaction zones)

• Rate Expression – lumped 

• Initial and Boundary Conditions 



Cobra solution of 2Cobra solution of 2--D Reactive Euler EquationsD Reactive Euler Equations

• simplified rate expression

• same EoS – explosive, detonation products and confinement

• open tube (rear boundary condition)

• run to steady state detonation

Cobra Analysis of ANFO Rate Stick

(all simplifications (rate and EoS) necessary to reduce run times
to > 2 weeks on Linux based PCs)



Cobra Analysis ApproachCobra Analysis Approach
ANFO Rate StickANFO Rate Stick

• simple pseudo-polytropic EoS – explosive, products and confinement

• simplified rate expression
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Cobra Analysis Comparison Cobra Analysis Comparison -- ANFO Rate StickANFO Rate Stick
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Blue – shock
Red – sonic locus
Green - contact

100 mm 0.8 g/cc

150 mm 0.8 g/cc

200 mm 0.8 g/cc

100 mm 4 g/cc

100 mm 8 g/cc



100 mm 0.8 g/cc

150 mm 0.8 g/cc

200 mm 0.8 g/cc

100 mm 4.0 g/cc

100 mm 8.0 g/cc



100 mm ANFO charge in 2 g/cc confinement – Pressure profile



100 mm ANFO charge in 2 g/cc confinement - Density Profile



100 mm ANFO charge in 2 g/cc confinement – Radial Velocity Profile



100 mm ANFO charge in 2 g/cc confinement – Reaction Extent Profile



Quasi- 1-D – Analysis for General EoS and Rate Law

Shock

Reaction Zone
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 is normal direction to shockn

 is tangential direction to shockξ

&  are fluid velocities normal and perpendicular to shocknu uξ



Steady Euler Equations in curvilinear coordinates
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Quasi-1-D approximation

• radial derivative and velocity terms are assumed negligible

• remaining partial derivatives become full

• Dn normal velocity becomes VOD

Analogous to WK central stream-tube but without 
unknown divergence term



Q1D Equations in curvilinear coordinates final
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Conclusions

High resolution AMR simulations required ~ 0.1 mm

Reasonable to good agreement – Q1D and COBRA
for central axis

Disadvantage of Wood Kirkwood – unknown axial 
divergence parameter

DSD for non-ideal explosives in heavy confinement eg rock ?

Limited “impact” of DDZ directly on rock 
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