

Flame propagation and deflagration to detonation transition (DDT) in obstructed channels

Andrzej Teodorczyk

Warsaw University of Technology

Outline

- •Regimes of flame propagation in channels
- •Mechanisms of flame acceleration
- \bullet Flame propagation and DDT in smooth tubes
- \bullet Flame propagation and DDT in rough tubes (with obstacles)
- \bullet • Recent advanced CFD simulation of flame acceleration and DDT by Gamezo et al.
- \bullet Experimental validation of this simulation at WUT

Flame propagation in tubes

- •**Lower limit** [⇒] LAMINAR FLAME (m/s)
- •Upper limit \Rightarrow CJ DETONATION (km/s)
- **Between limits** [⇒] spectrum of TURBULENT FLAMES (deflagrations) depending on:
	- Initial conditions (pressure, temperature, composition)
	- Boundary conditions (geometry, size, wall roughness, obstacles, etc.)
- Smooth tubes **Smooth tubes** [⇒] continuous flame acceleration and abrupt DDT
- • **Rough (obstructed) tubes** [⇒] several distinct regimes of steady flame propagation

Regimes of flame propagation leading to DDT

UNIVERSITY OF

Flame acceleration in channel

Open end 50mm channel; Stoichiometric propaneair at 1 bar

(*Teodorczyk et al.*, *1992*)

Effect of boundary layer on the flame acceleration and DDT

Premixed flames in smooth closed tube - stoichiometric hydrogen-oxygen

Shadow photograph of early stage of flame propagation p_0 =0.75 bar at 210-440 mm from ignition Ignition by electric spark of 20mJ

(Kuznetsov M., Dorofeev S., 2005)

Early accelarating flame

Oppenheim, plate 3

Mechanisms of flame acceleration

- • Growth of flame surface area:
	- flame folding
	- velocity gradient in the flow
- • Baroclinic vorticity generation
	- Density gradient normal to the pressure gradient
- • Hydrodynamic instabilities
	- Rayleigh Taylor
	- Richtmyer Meshkov
- •Microexplosions of vortices

Mechanisms of turbulence growth

- •Initial gas flow turbulence in the mixture
- Gas flow turbulence generated at the shear layer near the wall
- Nonuniform concentration (temperature, pressure) distribution in the flammable mixture
- Interaction of the flame front with an accoustic or pressure wave

Progress of DDT event in a smooth tube

a) the initial configuration showing a smooth flame and the laminar flow ahead;

UNIVERSITY OF TECHNOLOGY

- b) first wrinkling of flame and instability of the upstream flow;
- c) breakdown into turbulent flow and a corrugated flame;
- d) production of pressure waves ahead of the turbulent flame;
- e) local explosion of a vertical structure within the flame;
- f) transition to detonation.

(Shepherd&Lee, 1992)

Deflagration and detonation pressure

a) Slow deflagration; b) fast deflagration; c) overdriven detonation after DDT; d) CJ detonation

Fast deflagration

1 cm

Schlieren image of a fast deflagration wave (22% H2 in air), flame velocity 1200 m/s;

OH radical distribution of a fast deflagration wave, flame velocity 850 m/s, 17,5% H2 in air;

(Eder, 2001)

Flame interaction with shock wave

Butane-air flame; Shock wave of pressure ratio of 1.3

(Markstein, *1968*)

Flame interaction with shock wave

Reflected shock (*moving right to left*) emerging following multiple-shock flame interaction. Original incident shock Mach No. 1.7 (incident not shown). Mixture C2H4 + 3O2 + 4N2, initial pressure 13.2 kPa, *Δ*t 50 μ^s

DDT resulting from the interaction of a reflected shock with a flame kernel

(Bombrey&Thomas, 2002)

Transition distance to DDT

INIVERSITY O

Depends on:

- \bullet Combustible mixture (chemistry and thermodynamics)
- • Tube diameter – for hydrogen-air in smooth tube:
	- 8 m in 50 mm tube
	- 30 m in 400 mm tube
- •Ignition source
- \bullet Obstacles, wall roughness
- •Initial conditions
- •???

DDT in smooth tube

Streak direct photograph

- 4, 5 accelerating flame
- 6 explosion ahead of the flame
- 7 detonation
- 8, 9 retonation wave

(Lee, *1978*)

DDT in smooth tube

Schlieren framing photographs by rotating mirror camera

(*Myer&Oppenheim*, *1965*)

DDT in smooth tube

Two modes of DDT

DDT via local explosion

DDT via gradual amplification of transverse waves

(Courtesy of J.Chao, 2006)

Flame acceleration over the obstacle

(*Hirano*, *1987*) (*Wolanski*, *1983*)

Flame acceleration over the obstacle

WARSAW
UNIVERSITY OF
TECHNOLOGY

39th UKELG Discussion Meeting, Kingston University, 30th March 2007 A.Teodorczyk, Warsaw University of Technology 22

DDT in tube with obstacles

- Flame velocity versus fuel concentration for H2-air mixtures
- 10 m long tubes of 5 cm, 15 cm and 30 cm in internal diameter with obstacles (orifice plates).
- *BR = 1 - d2/D2* blockage ratio
- *d* orifice diameter
- *D* tube diameter

Regimes of flame propagation in tubes with obstacles

- •**quenching regime** - flame fails to propagate,
- • **subsonic regime** - flame is traveling at a speed that is slower than the sound speed of the combustion products,
- • **choked regime (CJ Deflagration)** - flame speed is comparable with the sound speed of the combustion products,
- • **quasi-detonation regime** - velocity between the sonic and Chapman-Jouguet (CJ) velocity,
- • **CJ detonation regime** - velocity is equal to the CJ detonation velocity

DDT in channel with obstacles

Pressure 20-150 torr Ignition by exploding wire

(*Teodorczyk, et al..1988*)

UNIVERSITY OF

Fast deflagration in a channel with obstacles

(*Teodorczyk, et al..1988*)

DDT in tube with obstacles

DDT in rough channel

(*Teodorczyk, 1990*)

Fast deflagration vs detonation in a very rough channel

(*Teodorczyk, 1990*)

DDT in rough channel

Flame speed 320 m/s

 p_0 =0.55 bar, 1090-1320 mm from ignition

(Kuznetsov M., Dorofeev S., 2005)

Detonation in a channel with obstacles

Flame acceleration and DDT in obstructed channels

Run-up distance for DDT in obstructed channels

In tubes at 0.1 MPa, ${\sf H_2}$ -air

DDT limits in obstructed channels (H₂-air)

Detonation simulation

Simulation: DETO2D

Experiment: Teodorczyk A., Lee J.H.S. and Knystautas R.: *Propagation Mechanism of Quasi-Detonations*, Twenty-Second Symposium (Int.) on Combustion, The Combustion Institute 1988, pp. 1723-1731

DDT simulations

V.Gamezo et al., 31st Symposium International on Combustion, Heidelberg 2006

- •stoichiometric hydrogen-air mixture at 0.1 MPa
- •• Reactive Navier-Stokes equations with one-step Arrhenius kinetics
- •• 2D channel with obstacles: length \sim 2D = 1, 2, 8 cm \sim 1, 2, 8 cm \sim 1, 8 cm \sim 1

Experimental study

Experimental

- \blacktriangleright **Diagnostics** (pairs):
	- 4 piezoquartz pressure transducers
	- 4 ion probes
- \blacktriangleright **Ignition:**
	- weak spark plug
- \blacktriangleright **Data acquisition:**
	- amplifier
	- 8 cards (10MHz each)
	- computer

Results – case A (H = 1 cm)

- \checkmark Fast deflagration, 900 -1050 m/s, no DDT
- \checkmark Maximum pressure 3 MPa

Results – case A (H = 1 cm)

**WARSAW
UNIVERSITY OF
TECHNOLOGY**

Results – case B (H = 2 cm)

- \blacktriangleright Fast deflagration, 1100 m/s
- \blacktriangleright Cases of quasi-detonations, quickly attenuated
- \blacktriangleright Maximum pressures for fast deflagrations up to 6 MPa and over 7.5 MPa for quasi-detonations

Results – case B (H = 2 cm)

Results – case C (H = 4 cm)

- \blacktriangleright Three sub-cases:
	- \checkmark Steady fast deflagration,
	- \checkmark DDT followed by fast deflagration,
	- \checkmark Quasi-detonation.

\blacktriangleright Maximum pressures for fast deflagrations up to 4 MPa. In case of DDT over 8 MPa.

Results – case C (H = 4 cm)

Results – case D (H = 8 cm)

 \blacktriangleright DDT followed by steady detonation, quasi-detonation or fast deflagration

Results – case D (H = 8 cm)

Results – case D (H = 8 cm)

- ¾ **Geometry of the channel and obstacles is the key factor for DDT**
- ¾ **Advanced simulations show DDT very well qualitatively but still are not able to predict it quantitatively (transition distance ?, transition probability?)**