Explosion Group TU Delft

SAFEKINEX project

Background and work structure

Delft University of Technology Julianalaan 136 2628 BL Delft The Netherlands Tel: +31 15 278 43 92 Fax: +31 15 278 44 52 E-mail: Pekalski@tnw.tudelft.nl http://www.dct.tudelft.nl/part/explosion/

Acknowledgements

To all partners for their essential contribution

Special thanks to:

Prof. John Griffiths
Prof. Martin Braithwaite
Dr Battin-Leclerc
Dr Kai Holtappels and Dr Volkmar Schröder

Accidents in process industry

Can an explosion be avoided? Explosion Indices

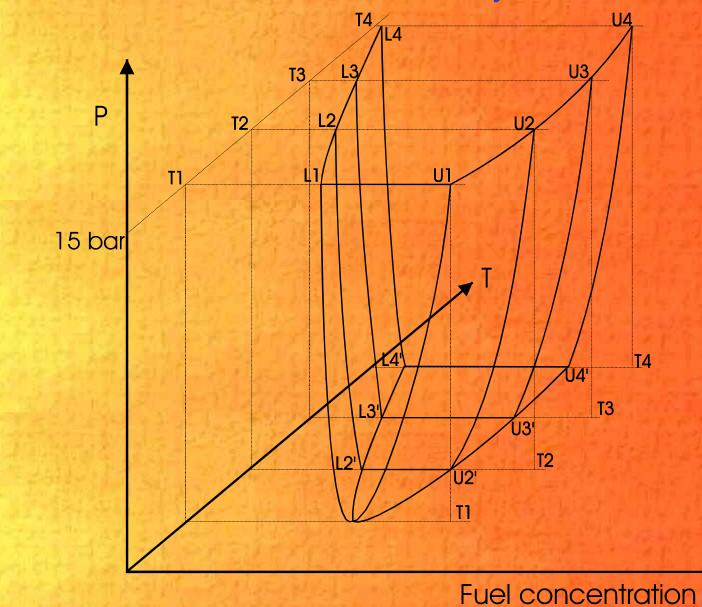
Explosion sensitivity: LEL, UEL (FL), LOC, MIE, AIT, CFT, MIT, MESG, LFP, UFP (flash points), ignition delay time (AIT), induction time (CFT) selfheating (smouldering) temp

Explosion severity:

P_{max}, (dP/dt)_{max}, K_{st}, K_g, flame speed, burning velocity (laminar, turbulent), pressure pulse

Both engineering and chemical factors play a role in these explosion indices

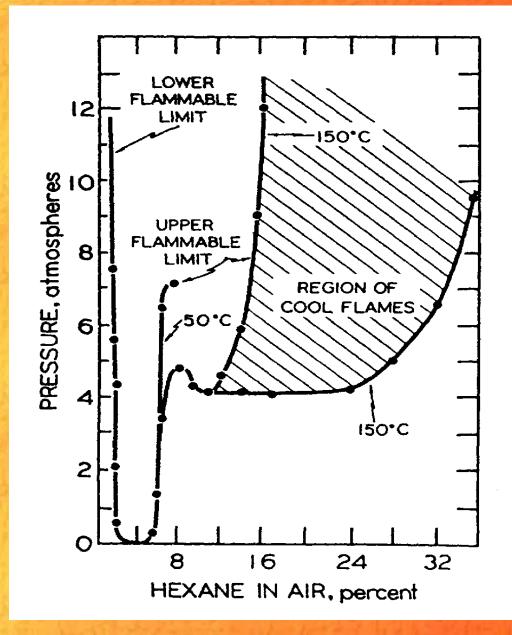
Effects of running conditions on explosion sensitivity indices


Indices related to the explosion sensitivity	Effect of increased pressure	Effect of increased temperature	Effect of increased turbulence
Lower explosion limit (LEL)	Decreases slightly	Decreases	Increases
Upper explosion limit (UEL)	Increases	Increases	Decreases
Lower flash point (LFP)	Increases	not applicable	Increases
Upper flash point (UFP)	Increases	not applicable	Increases
Minimum auto-ignition temperature (AIT)	Decreases	not applicable	Increases
Minimum ignition energy (MIE)	Decreases	Decreases	Increases
Maximum experimental safe gap (MESG)	Decreases	Decreases	Decreases
Limiting oxygen concentration (LOC)	Decreases	Decreases	Increases

Effects of running conditions on explosion severity indices

Explosion severity term	Effect of increased pressure	Effect of increased temperature	Effect of increased turbulence
Flame speed (S _f)	May slightly decrease or increase	Increases	Increases strongly
P _{max}	Increases linearly	Decreases	May slightly increase
(dP/dt) _{max}	Increases linearly	Can increase or decrease	Increases strongly
K-value: (K _G or K _{St})	Increases linearly	Can increase or decrease	Increases strongly

Conclusion: All explosion indices are affected by changes in pressure, temperature, turbulence, etc.


Effect of pressure, temperature, and fuel concentration on Flammability Limits

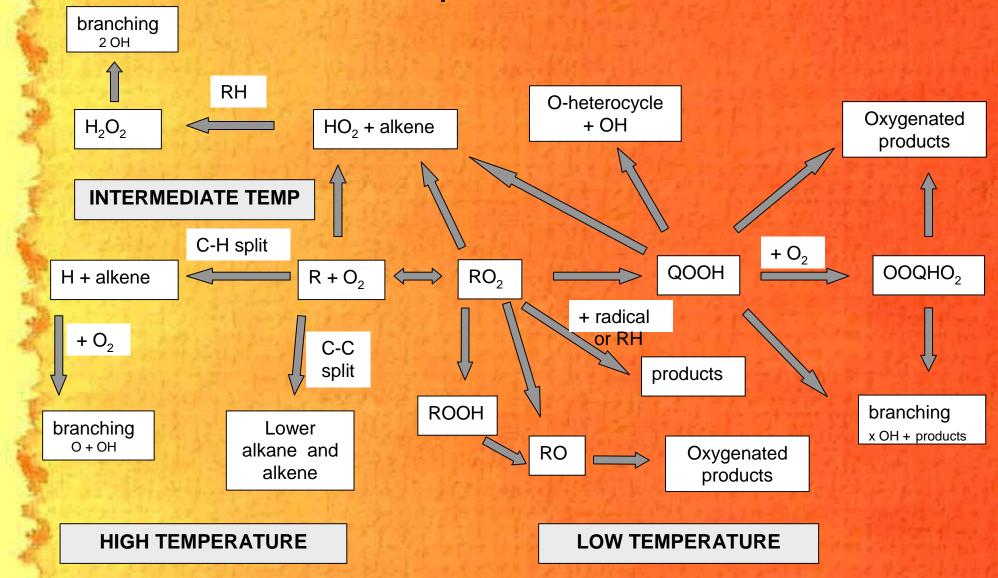
Flammability limits (FL) are affected by

1) Temperature 2) Pressure 3) Fuel type and concentration 4) Oxidiser type and concentration 5) Size of vessel and dimension 6) Ignition type and strength 7) Direction of flame propagation 8) Turbulence 9) Impurities **10) Catalytic material 11) Ignition criterion** 12) Cool flame phenomena (at elevated conditions)

Importance of reaction kinetic knowledge

GENERAL COMBUSTON KINETICS For any hydrocarbon at stiochiometric concentration $C_xH_vO_z + (x+y/4-z/2)O_2 \rightarrow xCO_2 + y/2H_2O$

The general oxidation scheme shows only the **overall reaction** and contains **absolutely no information** about the intermediate species and the oxidation mechanism


Therefore

- 1) The oxidation path and intermediate products are unknown
- 2) Reaction time is unknown

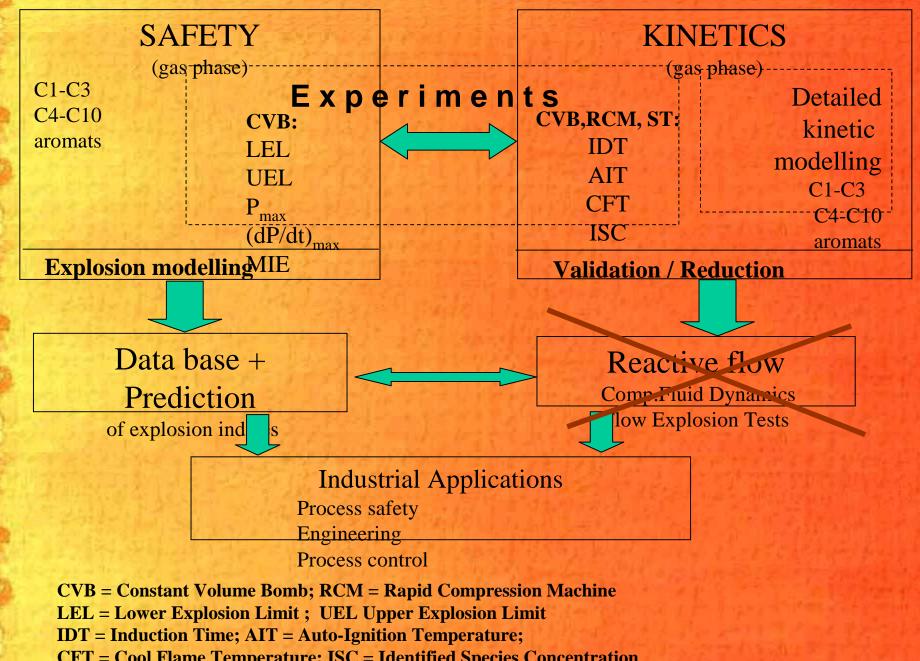
The oxidation reactions can be divided into three mechanisms namely: *initiation, propagation* and *termination*

We have experts in the audience on this subject

General oxidation scheme with respect to temperature

WHAT CAN BE DONE?

WHAT IS THE PROPER WAY FORWARD?



BAM, INERIS, WUT, UK, BASF, TUW, TUD CNRS, VUB, UL, TUD

next

Constrain: Gas phase kinetics (no heterogeneous reactions)

SAFEKINEX work overview

