Explosion Group TU Delft

Proper determination of the upper flammability limit at elevated conditions (high temperature and high pressure)

ANDRZEJ PEKALSKI

Delft University of Technology Julianalaan 136 2628 BL Delft The Netherlands E-mail: Pekalski@tnw.tudelft.nl http://www.dct.tudelft.nl/part/explosion/

Dr NICO DAM

University of Nijmegen Toernooiveld 1 6525 ED Nijmegen The Netherlands

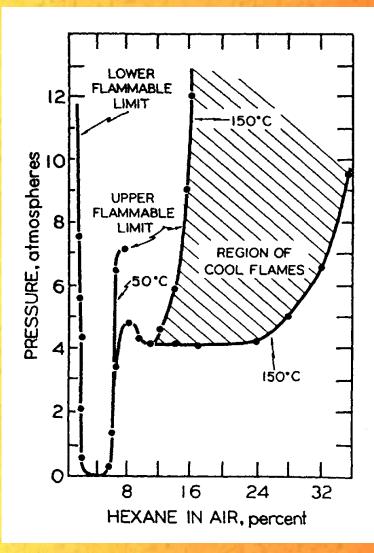
SOCIETAL NEED – industrial processes

Partial oxidation processes and their conditions in chemical industry

Final product	Annual world production (10 ⁶ tonnes/year)	Temp. (°C)	Pressure (bars)
Acetic acid	6.0 (1994)	50 ÷ 200	15 ÷ 80
From: acetaldehyde, alkanes,		The state of the second	The Street Lt.
alkenes, light gasoline, methanol	Present the state of the	5,2,0000	top = prisk and
Acetaldehyde	2.4 (1993)	100 ÷ 460	3 ÷ 20
From: ethylene, ethanol			
Ethylene oxide	11.2 (1995)	200 ÷ 300	10 ÷ 30
From ethylene	7月3日1月3月1日4月3日	and a particulation	C. C. L. Destrict
Propylene oxide	4.0 (1993)	90 ÷ 140	15 ÷ 65
From propylene	· · · · / · / · · · · · · · · · · · · ·	「「「いった」をある	ホーマテクスラーシー
Maleic anhydride	0.87 (1995)	350 ÷ 500	2 ÷ 5
From: benzene, butene, butane	に加加に自然し、「私をつ	" a first installing	いはないないとなった。
Phtalic anhydride	2.9 (1995)	150 ÷ 550	1 ÷ 3
From naphtalene, o+xylene,	to the second life of the	2 3 1 4 2 P	Call Inter property
butane	The second sector is the second s	13 212 - 12 19 - 5 - 5	E TT SPUSATE

SOCIETAL NEED – safe and efficient operation

Precise determination of the upper explosion limits enables:


- Safe operation (most desired outside the flammable range)
- Process optimisation (reduction of un-necessary error margin)
- Productivity increase

International standards on flammability limits At elevated temperature and atmospheric pressure • ASTM E 681-01; up to 150 °C ignition criterion: flame detachment • DIN 51 649, part 1; up to 200 °C ignition criterion: flame detachment prEN 1839 (T-tube) and (B-bomb); up to 200 °C ignition criterion (T): flame detachment ignition criterion (B): Pexp/Pinit > 5% At elevated temperature and elevated pressure

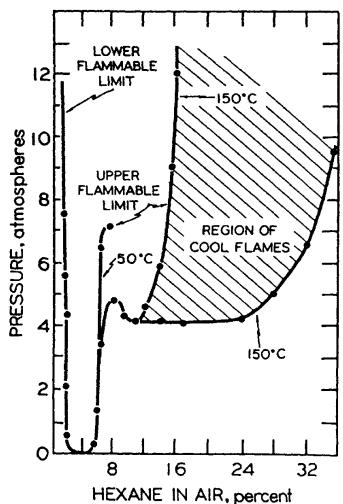
 ASTM E918-83 (1999); up to 200 °C and 138 bara ignition criterion (B): Pexp/Pinit > 7%

Cool flames

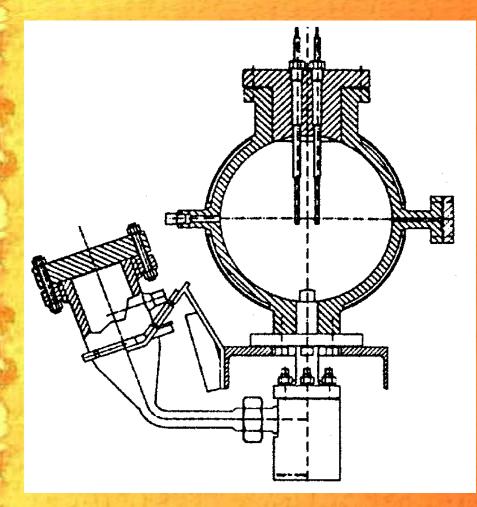
Cool flames are observed for most hydrocarbons

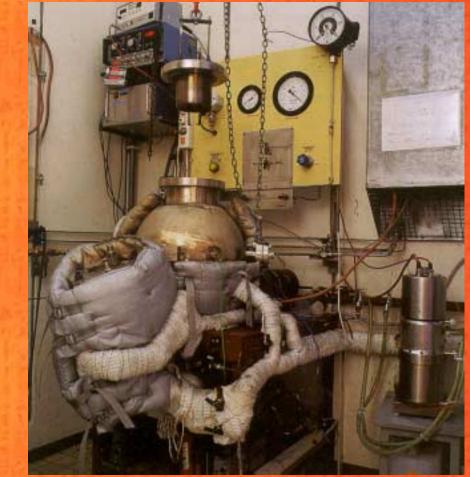
• Present in fuel rich mixtures, at elevated conditions

•Higher pressure enhances its occurrence


Comparison between cool flames and hot flames

	Cool Flames	Normal flames
Flammability range	Wide	Narrow
Heat liberation	Low	High
ΔT [deg] (in air)	10-150 (400)	1600-2800
Temperature coefficient	Negative	Positive
P_f/P_0 (in confined spaces)	Below 2 (low)	6-10 (high)
Flame velocity [cm/s]	3-5	30-325
Degree of conversion	Low	Completely
Products	HCHO, CO	H_2O, CO_2


Problem Formulation


1. How to distinguish between the UEL and the LCFL at elevated conditions in a closed volume?

2. What kind of flame is propagating at very fuel rich compositions?

Research equipment

 T_{max} =300°C, P_{max} = 275 bar Flame emission spectroscopy was applied

Experimental programme

n-butane/oxygen mixture

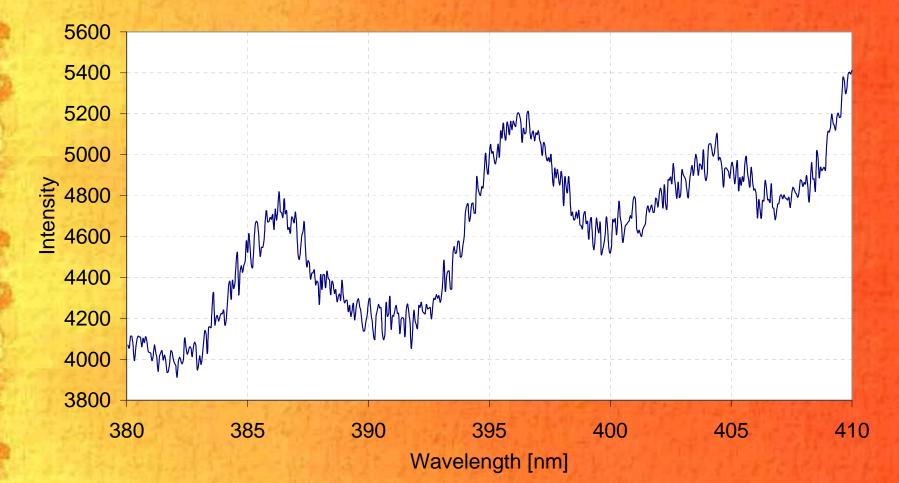
Tinit = 225 °C, Pinit = 2 bara, varying O_2 concentration Tinit = 225 °C, Pinit = 4 bara, varying O_2 concentration

 $CH_4/C_2H_4/O_2$ mixture Tinit = 225 °C, Pinit = 16 bara

A typical experimental run

O2 =27.06 %, C4H10=rest, Pinit= 4 bara, Tini =228 C

$$-P2 - ign - T1 - T2 - T3 - T4 - T5 - T6$$


CCD camera image record Exposure time = 5 seconds, max gain, slot 1 mm

Flame emission

N-butane/O₂ mixture at 4 bara

N-Butane/oxygen flame (XO2 = 27.06%)

Intensity coming from chemically excited HCHO (highest 10) : 385.6 (9) 396.0 (10), 405.3 (5) and 412.9 (8)

CH₄/C₂H₄/O₂ mixture at 16 bara Methane/ethylene flame, experiment 20 (T16-17)

800

380


385

390

Up going flame

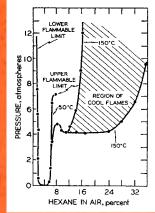
Returned flame (down going) ONLY

Subtraction of upgoing flame from up and down spectra

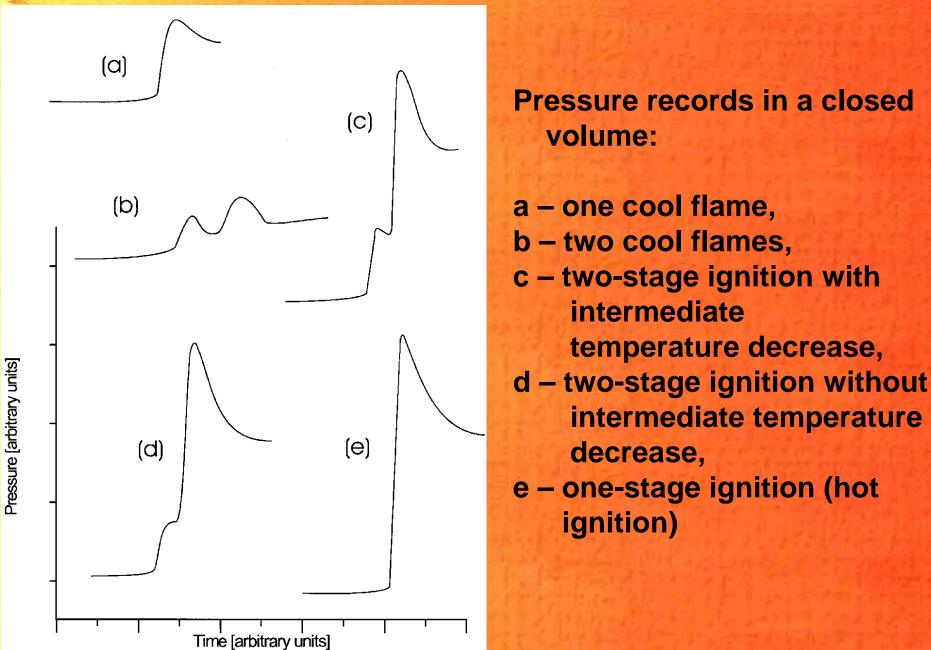
395

400

405


410

• Propagating flame in the sphere, initiated by a fused wire, forms excited formaldehyde


 At fuel rich concentrations at elevated conditions artificial ignition source (fused wire) initiates propagation of cool flame

 Based on the current international standards one may determine upper cool flame limit instead of the upper flammability limit

Any questions are welcome

Cool flames appearance

